
Studying Network Protocol Offload With
Emulation: Approach And Preliminary Results

Roland Westrelin∗, Nicolas Fugier∗, Erik Nordmark∗, Kai Kunze∗ and Eric Lemoine∗
∗Sun Microsystems, Inc.

4150 Network Circle
Santa Clara, CA 95054

Email: Firstname.Lastname@Sun.COM

Abstract— To fully take advantage of high-speed networks
while freeing CPU cycles for application processing, the industry
is proposing new techniques relying on an extended role of the
network interface card such as TCP Offload Engine and Remote
Direct Memory Access. This paper presents an experimental
study aimed at collecting the performance data needed to assess
these techniques. This work is based on the emulation of an
advanced network interface card plugged on the I/O bus. In the
experimental setting, a processor of a partitioned SMP machine is
dedicated to network processing. Achieving a faithful emulation
of a network interface card is one of the main concerns and it is
guiding the design of the Offload Engine software. This setting
has the advantage of being flexible so that many different offload
scenarios can be evaluated. Preliminary throughput results of
an emulated TCP Offload Engine demonstrate a large benefit.
The emulated TCP Offload Engine indeed yields 600 to 900%
improvement while still relying on memory copies at the kernel
boundary.

I. INTRODUCTION

Due to the continual advances in network technology, many
studies aimed at optimizing network processing in end-systems
have been carried out over the last 15 years. Examples are [1]
and [2].

Today, Network Interface (NI) vendors are beginning to
commercialize so-called TCP Offload Engines (TOEs) which
are NIs capable of executing TCP/IP. The vendors claim
that this capability will be necessary to handle data flow at
link speed with emerging networking technology (10 Gigabit
Ethernet). If it turns out that the overhead of processing the
non-data touching in TCP/IP represents a high percentage
of processing time, as indicated in [3], TOE could be an
interesting solution for relieving the host processor workload.
There is, however, certain controversy over the benefits of
TOE. TOE is believed to bring its own performance and de-
ployment issues [4]. Also, a number of studies have shown that
data-touching operations within the end-system, including in
particular memory copies are the major source of overhead [5],
[6]. In addition, although a TOE can facilitate the elimination
of memory copies for applications directly built on top of TCP,
it is of limited help in eliminating memory copies if an Upper
Layer Protocol (ULP) with its own headers and data payload
is used.

Remote Direct Memory Access (RDMA) over IP [7] is a
new protocol suite that provides a generic “built-in” solution
to achieving zero-copy [8]. The RDMA protocol consists of a

Direct Data Placement (DDP) component which performs the
actual transfer of the packet into the correct buffer memory.
RDMA implies extended NI processing, a new protocol stack
and comes with new APIs. RDMA/IP is a technology strongly
related to TOE because, in a typical implementation of the
RDMA protocol stack, the added layers need to be in the NI
to achieve early demultiplexing of incoming messages. Thus,
the TCP/IP protocol layered below also needs to be in the NI.

Full protocol offload is not new [9], [10], [11]. However,
it has never succeeded for complex general-purpose protocols
such as TCP/IP. The current renewed interest in TCP offload is
explained by a change in the performance trade-offs. Because
interaction between the host and the NI can be performed
in units independent of the packet size with a TOE, a large
decrease in per-packet overhead should be observed for long
transfers. This gain could potentially increase with network
speed because the maximal packet size does not increase as
fast as link speed (still 1500 bytes for 10 Gigabit Ethernet).
It could be argued that by the time faster networks are
widely deployed, fast enough processors will be available [12].
However, note that it is not sufficient that the system can
sustain the full network throughput. Some cycles must be left
for application processing. Furthermore, if the current trend
towards multi-threaded multi-core CPUs as the new path to
increased processor performance is confirmed then the fast
processors of the future might not be of much help for single
connection performance. Indeed, TCP processing has been
shown to be efficiently parallelizable only at the connection
level [13]. So in the future, systems might be able to fill a
big pipe with many simultaneous connections but not with a
single one.

From a more pragmatic angle, NI-level TCP implementa-
tions will need to become a commodity for RDMA or iSCSI
solutions to become widely accepted. Once an offload engine
is available, the extra effort required to provide a performance
boost for any applications by making it a generic TOE is
tempting.

Our research has indicated that performance data around
TOE and RDMA/IP is lacking. Therefore, this study aims to
experimentally study TOE, RDMA/IP and possible alternate
solutions embedded in a network interface card on the I/O bus,
so that educated choices can be made. This paper presents
an original methodology to attack the problem. Preliminary

0-7803-8686-8/04/$20.00 ©2004 IEEE

main memory

offload engine

host processors

I/O bus

registers

descriptor rings

memory bus

Fig. 1. The targeted architecture: an Offload Engine on the I/O bus which
uses typical mechanisms to interface with the host.

results are also given: although more complex protocols such
as RDMA are in the scope of this study, only TCP offload
numbers are presented here.

The rest of the paper contains the following sections.
Section II introduces the goals of this study. Section III
presents the experimental setting used in evaluating results.
In Section IV, preliminary results are presented. Section V
contains the conclusions of this preliminary study.

II. PROJECT CONTEXT

The experimental study presented in this paper, named the
TOAD project, aims to evaluate the performance issues in the
TOE and RDMA/IP design space. The targeted technologies
include full TCP Offload, extension to a full TOE for one
specific ULP, RDMA implemented in a full TOE, NI-level
acceleration without a full protocol offload in the case of a
specific ULP or RDMA. NFS is one major target application
both for the ULP-aware designs and as an RDMA applica-
tion [14].

In the scenarios of interest to TOAD, the Offload Engine
is always a network interface card plugged on the I/O bus
as illustrated by Figure 1. It follows the typical choices of
such designs. The network interface is programmed through
registers located on the card and accessed over the I/O bus
(Programmed I/O). It uses DMA to read and write main
memory and is able to send interrupts to host processors.
Descriptors for buffers to be used for incoming or outgoing
messages are stored in rings located in main memory.

Questions that the project is addressing:

• What performance is gained from offloading the TCP/IP
protocol to the network interface? From removing mem-
ory copies?

• What are the performance issues in designing the
host/offload engine interface? Careful design of the in-
terface between the host and the offload engine is key to
performance.

• What performance advantages would an Upper Layer
Protocol (ULP) aware TOE bring? How does an ULP

aware TOE compare with RDMA solutions?
• How do the extra operations brought by direct data

placement techniques (memory registration, extra mes-
sage round trips) affect performance?

• Is putting TCP/IP in the NI the only way of designing
high-performance RDMA-enabled or ULP-aware NIs? A
different approach could be to leave TCP/IP processing
in the host operating system and to design the NI in such
a way that it enables direct data placement by parsing
incoming packets.

Even though this study could produce conclusions valid for
any platform, experiments carried out in the TOAD project
focus on Sun SPARC R©/SolarisTM machines. Account is taken
for the specificities of these machines such as the existence of
IOMMUs1.

III. EXPERIMENTAL SETTING

Relying on existing TOE products to explore the
TOE/RDMA space has constraints: only a few products are
available, accessing the product’s internals, if possible, is
inflexible, and the limits of the product can restrict the validity
of the results. Thus, the TOAD project takes a different
approach and relies on emulation for the performance study.

A. Principle of the emulation

The key idea is to partition a SPARC/Solaris SMP machine
and to use some of the processors as an offload engine (OE).
Real packets are still exchanged with other machines over a
dedicated network interface.

Relying on emulation has many advantages. Because the OE
is a piece of software, it is infinitely customizable: any offload
scenarios and the design of the best host/OE interface (a key
problem in this design space) can be explored . Understanding
the performance results is also made easier because probes can
be inserted in any part of the system.

This idea is not really new since it is used, for instance, in
the ETA prototype [15]. The TOAD approach is unique in that
this project builds an experimental setting that is as close as
possible to the real hardware situation, and in understanding
and quantifying where reality and theory differ. It is not a
project aimed to investigate a new way to use the resources of
an SMP machine but to emulate the behavior of an OE that
would be plugged on the I/O bus.

In this article, the processors running the OE code are
referred to as the OE processors. The remaining processors
that run application and Solaris code are called the host
processors. Communication between machines occurs through
a real NI by opposition with the emulated NI composed of the
real NI and the OE processors.

The constraints in achieving a faithful emulation are:

1) If m processors of a n-processor machine are used
for the OE emulation, the “virtual” (n − m)-processor
machine must behave as close as possible to a true

1The IO Memory Management Unit is a piece of hardware enabling DMA
on virtual memory addresses

(n − m)-processor machine. This is an issue because
the m OE processors and the (n − m) host processors
share resources.

2) The CPU cycles used by the host processors when
interacting with the OE must be as close as possible
to those of interacting with a real OE.

One simple way of running OE code on the machine would
be to call the Solaris TCP code from a Solaris kernel thread
bound to one processor. This violates Constraint 1 because the
execution of the OE would disturb the remaining processors.
At the operating system level, the OE code would share code
and many data structures with the Solaris operation system
and the host processors would experience contention on them.
The only way to fully avoid this problem is for the OE not
to run any Solaris code. Also because the OE processors need
to be fully dedicated to their task, they cannot receive and
process interrupts. Finally, managing the n processors of the
machine has a cost: cross-calls (inter processor function calls
built on inter processor interrupts) are used to keep the state
of all the processors consistent. Because they are synchronous
and because all processors managed by the system are often
targeted, they have a cost for the initiating processor which
depends on the number of processors managed by the system.
To comply with Constraint 1, cross calls should not be sent
to the OE processors.

Even if the OE code somehow runs outside of the Solaris
operating system on its own processors, the host and OE
processors still share the memory bus in the same coherency
domain. So the host processors can be slowed down because
of memory traffic caused by the execution of the OE (the OE
accessing its code or data). Isolating the OE processors from
a hardware perspective means minimizing cache and memory
bus interactions. Most UltraSPARC R© III/IV machines feature
the SunTM Fireplane Interconnect [16] as a memory bus.
Processors and memory are organized by processor board:
each CPU module comes with memory, access is interleaved
across the memory that is on the same processor board. The
data path is switched but addresses use a shared bus. For
instance, a small 4-processor machine (the one used for the
experiments) has two processor boards with two CPUs and
memory. By dedicating one full processor board (memory
and CPUs) for the network processing, memory traffic is kept
local to the board. Only coherency traffic is then visible in the
whole machine, but there is nothing to be done about it (see
Section IV for an evaluation of the coherency traffic effect).

B. Implementation

The OE code is built in such a way that it does not need any
support from the Solaris operating system and can run stand-
alone. It is based on a BSD TCP stack (FreeBSD 4.8): this
implementation has proven to be simple, robust and fast. It
is organized around an event loop: the OE processor keeps
on polling for events coming from the network, from the
host processors or from an internal timer. The software is
not multi-threaded and only uses one CPU. However, all the
CPUs of the OE processor board are put off-line for an optimal

isolation from the rest of the machine. The OE code features
its own generic memory allocator (based on Solaris slab/vmem
allocator [17]). Time is updated by reading the tick register of
the processor.

The machine used for the test boots a modified version of
the Solaris operating system. Early during the boot process,
the memory of one processor board is stolen from the Solaris
operating system. The machine comes up with all the proces-
sors running the Solaris operating system. To start the OE:

1) The memory of the processor board that is to be used
by the OE is mapped using the largest possible pages at
a fixed offset in the address space of the kernel, referred
to as the OE memory.

2) The code of the OE (a stand-alone binary file) is loaded
in its memory.

3) Configuration data is passed to the OE through a prede-
termined location in OE memory.

4) A Solaris kernel thread is created.
5) The processors on the processor board chosen to run the

OE are put off-line. This uses a standard Solaris feature:
a processor can be designated to run no threads and to
receive no interrupts. It still participates in cross-calls
that are necessary to keep the processor in a consistent
state with respect to the rest of the system. The processor
is then waiting in a tight loop to be put back online.

6) The processors of 5 are then removed from cross-call
participation: they won’t be in a consistent state and
putting them back online is not safe.

7) The kernel thread of 4 is forced to run on one of the off-
line processor (the OE processor) and starts executing
the OE code.

At least, one extra network interface is installed in the
machine. The Solaris driver for this NI discovers this interface
and performs the basic configuration. A driver in the OE
(largely similar to a FreeBSD driver) takes the control of this
NI when the OE is started.

On the sending side, the OE programs its real NI so that
data is sent directly from the host buffers in host memory to
the network. Checksum offload has to be supported by the real
NI for this to make sense. On the receiving side, packets are
received to OE buffers allocated from OE memory so that the
placement of incoming data is under OE control. Data is then
copied to host memory.

Since the experimental platform fully controls whether
memory gets allocated from host memory or OE memory,
it reproduces an host/OE interface that very closely matches
that in the real hardware: descriptor rings in host memory,
“registers” in OE memory. Transfers performed by the OE
processor (emulated DMA) to read descriptors from host
memory, write completion events to host memory or write data
to host buffers are performed using block loads and stores [18]:
data movements that do not allocate in the cache and thus do
not introduce false sharing of cache lines.

Interrupts from the OE to the host processors are emulated
using inter-processor interrupt: a mechanism that is identical
to device interrupt in SPARC/Solaris.

offline processor

OE processor

OE memory

processor board

FirePlane data path

Network Interface (NI)

host processor

host memory

Offload Engine (OE)

"host" running Solaris

I/O bus

Fig. 2. The architecture used in the emulation of an Offload Engine: a
full processor board (2 processors and memory) and a Network Interface are
hijacked from Solaris and run a stand-alone event-driven piece of software
emulating an OE.

When a memory mapping is destroyed, cross-calls are used
to invalidate the TLBs (Translation Look-aside Buffers) of all
processors. Because the OE processor is not kept consistent
with the rest of the machine running the Solaris operating
system through cross-calls, it needs to access host memory
using persistent virtual mappings. Thus, all of the memory
used by the host processors is mapped once and for all before
the OE is started and the OE only uses this stable mapping
to access host memory. Because UltraSPARC processors are
64-bit, a large part of the address space is still available after
Solaris has set up its own mappings and creating those large
mappings is not an issue.

Figure 2 summarizes the architecture of the experimental
platform.

C. Host/Offload Engine interface

A poorly designed interface between the host and the OE
is likely to ruin most of the performance benefit brought by
protocol offload. This section presents the choices that were
made to design an efficient interface. The description is mostly
limited to the elements needed to understand the performance
discussed in section IV. They correspond to the operation of
the OE driver and OE to move large chunks of data in and
out of the machine. The interface with the application is the
BSD socket API: the application calls in the operating system,
data is copied at the kernel boundary, hardware mechanisms
provided by the OE are hidden from the application. The
interface design would be largely different to enable full user-
level communications.

The design described here was implemented in software in
our emulated platform. Because the emulation is faithful and
provides emulated variants of regular hardware mechanisms
(Direct Memory Access, Programmed I/O), the interface could
be implemented similarly in hardware and would bring the
same performance benefits. In the following, those mecha-

bytes sent count
register

per-processor request/event queues

OE

HOST

send buffers posted

receive buffers filled

per-connection data structure

mirror of bytes sent
count register

per-connection data structure

Fig. 3. Elements of the interface between the host and Offload Engine.

nisms are referred to as DMA and PIO even though in our
implementation we used the emulated variants.

Figure 3 summarizes the interface.
The interface was designed to relieve as much as possible

the main processors even if that meant putting an extra burden
on the OE.

Most of the exchanges between the host and OE go through
a request/event queue pair. The host posts request to the
request queue and they are read by the OE. Similarly the OE
posts events to the event queue and they are read by the host.
Both queues are in host memory. They are accessed by the
OE using DMA. The host notifies the OE of a new request in
the queue by writing (PIO) to an OE register. One of the field
of each event is used as a flag to identify that a new event is
ready: by checking this flag in the current event queue head,
the host knows whether a new event is ready or not. The OE
can also trigger an interrupt to signifies the host that a new
event was posted.

One such a queue pair exists per-processor: this way one
processor can access its own queue pair with no contentions
on lock.

The queue pair is used for every socket operations that are
synchronous (when the host needs an answer from the OE
to complete the operation): opening a socket, connect, listen,
accept or closing a socket for instance. The host passes a
request down to OE using the request queue and gets a reply
back through the event queue. The calling thread is put to sleep
and woken up by an interrupt triggered by the OE once the
event is posted. As shown in Figure 3, the host and OE keeps
their own per-connection data structures. The requests and
events carry enough information for them to relate a request
or an event to a particular connection.

Sending and receiving works differently.
To send, the host passes a descriptor of a kernel buffer

to the OE through the request queue. But it does not wait
for an event back, the thread does not block, it returns right
away as expected by a BSD socket application. Notification

of completion of sends must be provided by the OE so that
the host knows when to free buffers. This is achieved in a
cumulative fashion: the OE keeps the count of the number of
bytes sent for a particular connection. This count is mirrored
in host memory using DMA. Freeing of buffers is performed
lazily by the host: it reads the count of bytes sent and frees
the buffers that it can. No interrupt is triggered. For the host,
obtaining the information on the completion of sends in a
cumulative fashion is much cheaper than if it had to process
events from the OE: it does not have to go over many events
to release several buffers in one pass.

BSD send blocks once a thread has filled its ”socket buffer”.
That happens when the network consumes data more slowly
than the application produces them. In our design, similarly,
a thread cannot fill kernel buffers indefinitely if they are not
processed fast enough by the OE. When the host notices that
a thread has exhausted its share of buffers for a particular
connection, this thread is put to sleep and the host request
an event and an interrupt from the OE when enough data for
this connection has been sent and acknowledged. This request,
passed through the event queue, is independent of the size of
the buffers passed to the OE (for instance, the host requests
an event once 128KB of buffers is freed). When the host gets
the event back, it wakes the application thread up.

Receiving is performed through fixed-length anonymous
buffers. A large pool of buffers is provided by the host to
the OE. They can be used for any connection. When data
for a connection is received by the OE, it picks one of the
anonymous buffer up, fills it and passes it back to the host
through an event and an interrupt. In its interrupt routine the
host demultiplexes incoming buffers: it attaches the newly
filled buffer to the corresponding connection data structure.
The application, in kernel space, will look at this connection
data structure for new data. For the tests presented in this
paper, the OE actually waits until it receives enough data to
fully fill an anonymous buffer until it notifies the host that data
has arrived. Of course, the host needs to periodically refill the
anonymous buffer pool.

IV. PRELIMINARY RESULTS

The test machine is a Sun FireTM v480: two processor
boards, each with two 1050MHz UltraSPARC III Cu proces-
sors (four processors total) and 4GB of main memory (8GB
total). The network card is plugged on a 64bits/66MHz PCI
bus. Note that the PCI bus implementation in this machine
does not reach the theoretical maximal throughput of 4.2Gb/s.
Peak throughputs of 1.12Gb/s from host to network and 3Gb/s
from network to host are reported by a test provided by
Myricom2.

Drivers for two network interfaces were developed:

Myricom’s Myrinet adapter. Myrinet [19] is a 2Gb/s full
duplex proprietary interconnect technology popular in
high performance computing. The Myrinet NI appears
as a regular Ethernet NI from the IP stack perspective.

2http://www.myri.com/fom-serve/cache/121.html

In the driver, Ethernet packets are built and embedded
in Myrinet frames that provide extra routing information
(Myrinet uses source routing). Even though Myrinet
implements back-pressure flow control at the link level,
packet losses under congestion are still possible on the
links or a the endpoints.

Sun Gigaswift Ethernet adapter, Sun’s standard gigabit Eth-
ernet NI.

The Solaris version used is a development version of the
next official release (Solaris 10).

As mentioned in Section III, memory bus coherency traffic
created by the OE software could interfere with the host
processors and impact benchmark results thus breaking faithful
emulation of a smart NI on an I/O bus. The results of a
small test program in which one thread per host processor
copies a large piece of data several times from and to the
host memory are used to obtain an estimate of the worst-
case perturbation. The goal is to measure the performance
of this benchmark both when the OE processor is idle and
when it is also copying blocks of data from and to its own
memory. Note that because copies are performed inside host
memory or inside OE memory, the data traffic created by the
host processors and the OE processor cannot interfere (the data
path on the memory interconnect is switched). Since the blocks
copied are much larger than the caches, the test creates a lot
of coherency traffic. The results show that the host processors
are slowed down by less than 1% when the OE is loading
the memory bus (from a mean memory copy bandwidth for
the host copy of 642MB/s to 637MB/s). Furthermore, the test
conditions are certainly much more demanding of the memory
bus than any of the benchmarks presented here.

The network performance results provided here are obtained
with the Iperf throughput benchmark [20]. It is a socket API
test. A single connection is opened for the duration of the
test: only the maximal throughput on a long-lived connection
is benchmarked. The results include system calls and one copy
on the sending and receiving sides through kernel buffers.

In the tests, Myrinet uses 9KB packets and Sun Gigaswift
Ethernet adapter uses regular 1.5KB Ethernet frames.

What is interesting is not so much the maximal throughput
as quantifying how using a TOE relieves the host CPUs.
To be sure that comparisons are fair between the different
networking technologies and TCP implementations, the load
is expressed as the percentage of one of the machine’s host
CPU that is needed to achieve 1Gb/s of throughput. The cycles
saved from using a TOE allow the system to run application
code. Also, assuming that the I/O subsystem and networking
hardware could be scaled up, the load of the host processors
also gives an indication of the maximal throughput that could
be sustained by one processor: if n% of one processor is
necessary to handle 1Gb/s, (100/n)Gb/s could be sustained
by the processor.

The baseline for comparison is obtained with the Solaris
TCP stack and the Sun Gigaswift Ethernet adapter NI. The
results are: 945Mb/s for 77% of one CPU on the sending side
(81% of one CPU per Gb/s) and, 942Mb/s for 136% of one

CPU (i.e. one CPU fully loaded and another 36% loaded) on
the receiving side (144% of one CPU per Gb/s). The host
TCP stack saturates the link in both directions. By tuning the
configuration options of the Solaris kernel the throughput to
CPU utilization ratio on the host CPUs can be maximized.
When the application and the interrupts are all handled by
the same processor, on the receiving side, only 741Mb/s of
throughput is sustained for 99% of one CPU. That corresponds
to 134% of one CPU per Gb/s. Even though the link is not
saturated the CPU is more efficiently used. Table I and the
following use this number (134% of one CPU per Gb/s) as
the baseline number of the Solaris TCP stack.

With Myrinet, when sending through the TOAD OE, the
throughput is 1.1Gb/s. As mentioned above, the PCI bus
implementation does not offer theoretical peak throughput. It
is the limiting factor here on the sending side. When receiving
through the OE, the throughput is 1.8Gb/s. This result on the
receiving side is on par with the best numbers published by
Myricom3. With the Sun Gigaswift Ethernet adapter and the
OE, the maximal throughput is 890Mb/s on the sending side
and 940Mb/s on the receiving side.

However, the results obtained in the OE case with the
Myrinet adapter and the Sun Gigaswift Ethernet adapter are the
same when normalized to the throughput. This is as expected:
the interactions between the host and OE determines the load
of the host CPU and they are independent of the underlying
network technology. When passing data in 128KB chunks
between the host and OE, 11% of one CPU per Gb/s on the
sending side is necessary, 12% of one CPU per Gb/s on the
receiving side. Assuming the I/O subsystem and networking
hardware can handle it, the host processor could handle close
to 10Gb/s when 100% loaded. This represents an improvement
factor of 7 on the sending side and an improvement factor of
10 on the receiving side as compared to Solaris TCP. When
passing data in 8KB chunks, the load increases to 14% of
one CPU per Gb/s on the sending side and 24% of one CPU
per Gb/s on the receiving side. Passing data in larger chunks
between the host and OE helps decrease the load of the host
CPUs. Note that the load increases faster with smaller chunks
on the receive side than on the send side. This is because,
as explained in Section III-C, on the receive side the host is
interrupted once per chunk when on the send side, cumulative
notification is used and interrupts are triggered only when the
application thread is put to sleep.

Table II summarizes the results.
In addition, note that: on the sending side, the user-to-kernel

memory copy accounts for about 10% of one CPU per Gb/s,
whether TOE is used or not does not affect the results. On
the receiving side, the kernel-to-user memory copy accounts
for about 10% of one CPU per Gb/s when using the TOE and
about 22% when using the standard Solaris TCP stack. The
higher overhead for the copy in the latter case comes from
the extra overheard incurred when copying small data chunks
(1460B chunks here).

3http://www.myri.com/myrinet/performance/ip.html

Sending side Receiving side
Memory copies 9% 22%
TCP/IP + driver 72% 112%
Total 81% 134%

TABLE I

SOLARIS TCP – LOAD ON THE HOST PROCESSORS EXPRESSED AS THE

PERCENTAGE OF ONE CPU TO REACH 1GB/S

Sending side Receiving side
128KB
chunks

8K
chunks

128K
chunks

8K
chunks

Memory copies 9% 10% 10% 10%
TOE driver 2% 4% 2% 14%
Total 11% 14% 12% 24%

TABLE II

TOE – LOAD ON THE HOST PROCESSORS EXPRESSED AS THE PERCENTAGE

OF ONE CPU TO REACH 1GB/S

V. CONCLUSION

This paper presents the use of emulation by partitioning
an SMP machine to evaluate different protocol offloading
scenarios. The results so far, restricted to a TOE used on
a throughput test, show surprisingly large benefits for this
very controversial technology. A single copy through kernel
buffers is still included in these tests. Contrary to conventional
wisdom, in this study, the copy overhead is not the dominating
contribution to overheads.

However, the benchmark used in this paper was expected to
behave favorably with a TOE. Future work includes a study
of
other workloads : short-lived connections, transactional or

latency-sensitive tests.
other offload scenarios : processing specific to one ULP in

the TOE, a zero-copy interface to the OE, RDMA.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers
for their thoughtful comments on this paper. Many thanks also
to James P.G. Sterbenz for his advices.

REFERENCES

[1] H. K. J. Chu, “Zero-copy TCP in Solaris,” in USENIX 1996 Annual
Tech. Conf., Jan. 1996.

[2] J. S. Chase, A. J. Gallatin, and K. G. Yocum, “End System Optimizations
for High-Speed TCP,” IEEE Communications, vol. 39, no. 4, Apr. 2001.

[3] J. Kay and J. Pasquale, “The Importance of Non-Data Touching Pro-
cessing Overheads in TCP/IP,” in SIGCOMM, 1993.

[4] J. C. Mogul, “TCP offload is a dumb idea whose time has come,”
in 9th Workshop on Hot Topics in Operating Systems (HotOS
IX), 2003, http://www.usenix.org/events/hotos03/tech/full papers/mogul/
mogul html/index.html.

[5] D. D. Clark, V. Jacobson, J. Romkey, and H. Salwen, “An Analysis
of TCP Processing Overhead,” IEEE Communications Magazine, June
1989.

[6] D. Clark and D. Tennenhouse, “Architectural Considerations for a
New Generation of Protocols,” in Proceedings of the SIGCOMM’90
Symposium on Communications Architectures and Protocols, Sept. 1990.

[7] IETF RDDP working group documents. [Online]. Available: http:
//www.ietf.org/ids.by.wg/rddp.html

[8] J. P. G. Sterbenz and G. M. Parulkar, “Axon: A Distributed Commu-
nication Architecture for High-Speed Networking,” in Proceedings of
IEEE INFOCOM’90, San Francisco, CA, June 1990, pp. 415–425.

[9] H. Kanadia and D. R. Cheriton, “The VMP Network Adapter Board
(NAB): High-Performance Network Communication for Multiproces-
sors,” in ACM symposium on Communications architectures and proto-
cols, 1988, pp. 175–187.

[10] G. Chesson, “XTP/PE design considerations,” in IFIP Protocols
for High-Speed Networks, H. Rudin and R. Williamson, Eds.
Elsevier/North-Holland, 1989, pp. 27–33.

[11] M. Zitterbart, “A multiprocessor architecture for high speed network
interconnections,” in INFOCOM’89. Proceedings of the Eighth Annual
Joint Conference of the IEEE Computer and Communications Societies,
vol. 1, Apr. 1989, pp. 212–218.

[12] C. Partridge, “How Slow is One Gigabit per Second?” ACM Computer
Communication Review, vol. 20, no. 1, pp. 44–53, Jan. 1990.

[13] E. M. Nahum, D. J. Yates, J. F. Kurose, and D. Towsley, “Performance
Issues in Parallelized Network Protocols,” in First USENIX Symposium
on Operating Systems Design and Implementation (OSDI), Monterey,
CA, Nov. 1994.

[14] B. Callaghan, T. Lingutla-Raj, A. Chiu, P. Staubach, and O. Asad, “NFS
over RDMA,” in Workshop on Network-I/O Convergence: Experience,
Lessons, Implications (NICELI), Karlsruhe, Germany, Aug. 2003,
http://www.acm.org/sigcomm/sigcomm2003/workshop/niceli/papers/
nfsrdma-paper.pdf.

[15] G. Regnier, D. Minturn, G. McAlpine, V. Saletore, and A. Foong, “ETA:
Experience with an intel xeon processor as a packet processing engine,”
in Hot Interconnects 11, Stanford University, Aug. 2003, http://www.
hoti.org/Hoti11 program/papers/hoti11 11 regnier g.pdf.

[16] A. E. Charlesworth, “The sun fireplane system interconnect,” in Su-
perComputing SC2001, Denver, CO, Nov. 2001, http://www.sc2001.org/
papers/pap.pap150.pdf.

[17] J. Bonwick and J. Adams, “Magazines and Vmem: Extending the Slab
Allocator to Many CPUs and Arbitrary Resources,” in USENIX Annual
Technical Conference, 2001, pp. 15–33.

[18] UltraSparc III Cu user’s manual, Sun Microsystems, Jan. 2004, http:
//www.sun.com/processors/manuals/USIIIv2.pdf.

[19] N. Boden, D. Cohen, and R. Felderman, “Myrinet - A Gigabit-per-
Second Local-Area Network,” in IEEE Micro, ser. 1, vol. 15, Feb. 1995,
pp. 29–36.

[20] “Iperf - the tcp/udp bandwidth measurement tool,” http://dast.nlanr.net/
Projects/Iperf/.

