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Figure 1: (a) The forehead-mounted wearable is integrated into the inner surface of a VR headset. (b) Exploded view of the
device, comprising an ESP32 microcontroller and nine LRA vibration motors, connected via a 3D-printed !exible substrate. (c)
A user wearing and interacting with the system during operation.
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Abstract
We present EchoSense, a forehead-mounted vibrotactile wearable
system that simulates dolphin echolocation in virtual reality (VR).
Drawing from biomimetic principles and multisensory interaction,
the system translates spatial and directional sonar information into
tactile feedback on the user’s forehead. Integrated into a VR headset,
EchoSense enables users to perceive the position and distance of un-
derwater objects via vibration patterns that re"ect the direction and
simulated time-of-"ight (ToF) of sonar pulses. Through an immer-
sive dolphin embodiment experience across two scenarios (pristine
and polluted oceans), users navigate, forage, and connect with other
dolphins using only their head and minimal controller input. Our
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system highlights how non-visual, animal-inspired interfaces can
support embodied spatial awareness, empathic interaction, and
environmental re"ection in XR.

CCS Concepts
• Human-centered computing → Haptic devices; Virtual real-
ity; Empathy.
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1 Introduction
Animals such as dolphins and bats have evolved sophisticated
echolocation systems that allow them to navigate and detect objects
through sound [14, 18]. These animals emit high-frequency pulses
and interpret the returning echoes to detect the location, shape,
and movement of nearby objects, which enables them to navigate
freely even in environments where vision is limited [3]. Dolphins,
for example, posess a biological system called echolocation or bio
sonar [24], that can emit ultrasonic clicks through a specialized
forehead structure called the melon and receive returning echoes
via receptors in the lower jaw. These acoustic signals are integrated
with visual input and processed in the brain to determine the di-
rection, distance, and even internal structure of target objects (as
Fig.2).

Figure 2: Dolphins emit ultrasonic clicks through a special-
ized forehead organ called the melon, which focuses sound
into a directional beam. Re!ected echoes from surrounding
objects are received via the lower jaw and processed by the
brain to determine the direction, distance, and shape of the
object, enabling precise spatial perception through echoloca-
tion.

Drawing on such biological systems, HCI researchers have in-
creasingly looked toward biomimetic interaction design to inform

novel human-computer interfaces to enhance presence, embod-
iment, and user engagement [17, 30]. By simulating real-world
perception, such systems have not only enriched cognitive and
emotional engagement but also been explored to support a#ective
communication and embodied experience, particularly through in-
tegrated multisensory approaches [11, 13]. Among these modalities,
haptic feedback plays a critical role in bridging the gap between
virtual stimuli and physical sensation. Prior work has explored
a range of haptic strategies, including vibrotactile cues, thermal
signals, and force feedback to improve spatial awareness, object
manipulation, and a#ective communication in VR environments
[19, 21, 27].

Inspired by dolphin echolocation, this study investigates a mul-
tisensory wearable device embedded in the forehead area of a VR
headset. The system simulates sonar-like perception through di-
rectional vibrotactile feedback. We explore how forehead-centered
haptic sonar can support spatial object localization, foster empathic
engagement in extended reality (XR) environments, and enable
non-visual navigation, environmental awareness, and emotional
resonance in immersive experiences.

2 Related Work
Since its emergence in the mid-20th century [29], biomimetics
has signi!cantly in"uenced !elds such as robotics, computer sci-
ence, and bioengineering [5, 17]. As an interdisciplinary domain,
it draws on natural systems to solve complex engineering prob-
lems through two major approaches: biology-to-design (bottom-up)
and challenge-to-biology (top-down) [23]. Innovations span form,
function, and ecology, with applications in sustainability, architec-
ture, robotics, and interaction design. However, due to physical and
technical constraints, it remains challenging to realize biomimetic
systems.

In HCI, empathy has been studied through both perceptual mod-
eling (inferring emotional states) and expressive modeling (system
responses) [16, 19, 28]. Systems like Kismet [8] and EmoReact [25]
replicate empathic behaviors using facial, vocal, and physiological
cues. Some draw inspiration from mirror neuron mechanisms to
simulate a#ective resonance [30]. Wearable and VR-based systems
further support embodied empathic interaction. Tactile systems
such as EmpaTalk and HapticEmpathy deliver emotional cues via
vibration or pulse feedback [19, 21], while VR experiences enable
perspective-taking and embodied empathy through avatar embod-
iment and immersive design [4, 7]. Recent work has used VR to
promote empathy toward animals by simulating their perspective in
immersive contexts [9, 26]. Meanwhile, biomimetic haptic feedback
remains underutilized as a channel to express or elicit empathy.
This limits the capacity of current systems to enable multimodal em-
pathic interaction, especially where bodily sensation and emotional
resonance are essential.

While most haptic hardware focuses on the hands and arms, alter-
native systems have been developed for other body parts, including
the torso (e.g., vests, belts), lower limbs, and the head. Among these,
head-mounted haptic systems remain less explored [1]. Such sys-
tems typically take the form of helmets or hat-like wearables and
provide vibrotactile [2], thermal [27], or pressure-based feedback
[15], varying in terms of actuator placement and the type of force
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delivered. Functionally, head-mounted haptics have been applied to
support spatial perception and navigation [2, 6, 20, 22], immersive
XR experiences [27, 31], and accessibility tools for deaf or hard-
of-hearing users via spatial vibrotactile signals [10]. Despite the
capacity of human head for spatial discrimination, the forehead
remains underexplored as a haptic interface. Prior work suggests
its potential to convey rich vibrotactile patterns [10, 12], yet appli-
cations for a#ective modulation, such as emotion communication
or stress signaling, are still limited. Based on the above research, we
investigate the forehead as an active haptic interface, with a partic-
ular focus on how forehead-based vibrotactile feedback in"uences
users’ emotions, interactions, and environmental awareness.

3 Implementation and Design
Dolphins’ echolocation process integrates precise time-of-"ight
(ToF) analysis with spatial acoustic patterns, allowing for non-visual
navigation and object recognition, even in low-visibility environ-
ments. Following the biology-to-design (bottom-up) biomimetic
approach [23], we draw on this natural system not by replicating its
auditory modality, but by translating its perceptual mechanism into
an alternative sensory pathway, touch. Speci!cally, we map spatial
information (direction and distance) into forehead-based vibrotac-
tile feedback, leveraging the forehead’s high tactile sensitivity and
its alignment with the user’s egocentric !eld of view.

This design choice is motivated by several factors:
• Human auditory spatial localization is limited in precision,
particularly for front-facing or near-!eld sources, andmay be
easily masked in noisy or visually complex VR environments.

• The forehead has been identi!ed as one of the most sensitive
regions of the human body for tactile feedback[12], making
it an ideal site for delivering !ne-grained vibrotactile infor-
mation without obstructing vision or impeding interaction.

• Integrating feedback into the head-mounted display (HMD)
allows for seamless embodiment and minimal hardware in-
trusion, supporting naturalistic and immersive use cases.

Rather than reproducing the experience of hearing echoes, our
system enables users to receive spatial cues through directional
vibration, simulating a sonar-like interaction model through con-
trolled tactile stimulation. In doing so, we reimagine echolocation
not as an auditory phenomenon but as a multisensory interface that
supports spatial awareness, navigation, and empathic embodiment
in virtual environments.

3.1 Wearable Device
We developed a lightweight, forehead-mounted haptic interface
that delivers direction-based and distance-based tactile feedback.
The device is embedded into the inner surface of a standard VR
headset, allowing for direct skin contact while maintaining user
comfort. Its housing is 3D-printed using "exible, skin-safe materials
to accommodate di#erent forehead shapes (as Fig.1(b)).

The hardware system consists of an ESP32 DEVKIT microcon-
troller connected to nine linear resonant actuators (LRAs) arranged
horizontally across the forehead. These actuators correspond to
nine 20° sectors spanning the user’s 180° forward-facing !eld of
view. Each motor is independently addressable, allowing for precise
control over vibration intensity and timing.

The actuators operate at approximately 150 Hz, with each activa-
tion lasting 1500 ms and following a linear decay pro!le to produce
a smooth tactile fade-out. When multiple actuators are triggered
simultaneously (e.g., for wider targets), an exponential temporal
decay is applied from the center outward, enhancing directional
salience and reinforcing the perceived location of the stimulus.

3.2 VR Experience
In designing the VR experience, our goal was not only to allow
users to engage with a dolphin’s echolocation system through mul-
tisensory interaction, but also to foster empathy and awareness
of marine life by embodying its survival challenges. To achieve
this, we created four interactive events across two distinct envi-
ronmental scenarios based on the Unity3D1 game engine, aimed
at highlighting the impact of ocean pollution and deepening users’
emotional connection with aquatic ecosystems.

Here, we describe our interactive events:
Movement and direction control. To maximize the sense of em-

bodiment, we limited user input to only forward and backwards
movements via the joystick on the right-hand controller. Users
control the dolphin’s locomotion in the virtual environment by
pushing the joystick forward or backwards. Rotational control on
both the horizontal and vertical axes is handled entirely through the
orientation of the VR headset, allowing for natural head-driven nav-
igation. To enhance realism, the user’s movement is synchronized
with a dolphin swimming animation, reinforcing the sensation of
inhabiting a dolphin’s body.

Echolocation system. Users trigger the sonar emission by pressing
the toggle button on the left-hand controller. Upon activation, a red
visual sonar wave is emitted across the virtual sea"oor, halting and
returning upon collision with environmental obstacles. To enhance
immersion and biological realism, a synchronized dolphin “click”
sound is played each time the sonar pulse is emitted, simulating
the vocalization dolphins produce during real-world echolocation.
The system divides the user’s 180° forward-facing !eld of view into

Figure 3: The 180° horizontal "eld in front of the user is
divided into nine 20° sectors, each mapped to a speci"c vibro-
tactile actuator on the forehead. When a target "sh appears
within a sector, the corresponding actuator delivers a delayed
vibration to simulate sonar-based distance feedback.

nine horizontal segments (each covering 20°), with each segment
mapped to a corresponding actuator in the forehead-mounted vi-
brotactile array. After each scan, the system automatically identi!es
1https://unity.com/
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the nearest !sh within view, highlights it in red (as Fig.4(c)), and
activates the corresponding forehead motor with a time delay based
on the simulated ToF of the sonar pulse. To help users di#erentiate
between types of !sh (such as food, predators, or companions), we
implemented distinct vibrotactile patterns using one, three, or !ve
adjacent actuators to represent di#erent target sizes and categories.

Predation. Once the echolocation system highlights a target !sh,
the user can navigate the dolphin toward it. Upon contact, a swal-
lowing sound is played and a predation event is triggered, increasing
the user’s survival score.

Searching for companions. At the midpoint of the experience, the
user hears a calling sound from a companion dolphin, prompting a
search task. During this phase, the echolocation system prioritizes
detecting the companion’s location. Once the companion appears
within the user’s !eld of view and is successfully identi!ed by the
system, it is highlighted in blue(as Fig.4(b)). The user must then nav-
igate toward and make contact with the companion, which triggers
a heart-shaped visual interface indicating successful connection.

Avoiding predators. The user must avoid approaching predators
to prevent death. The echolocation system assists by identifying the
predator’s location; when a predator enters the detection range, it is
highlighted in red, and the user receives corresponding vibrotactile
feedback to signal danger.

We then describe the two scenes:
Scene 1 "the Ocean in Memory" The “Ocean of Memory” scene

Figure 4: (a) A visualization of dolphin echolocation in a pris-
tine marine environment. (b) The dolphin locates a compan-
ion using its biosonar system. (c) The echolocation system
automatically highlights the nearest food target within the
"eld of view. (d) The player wins by successfully capturing a
su#cient number of "sh.

depicts a pristine underwater world bathed in sunlight. Coral reefs
and swaying seagrass move gently with the current, creating a
serene and vibrant marine environment. In this setting, the water is
remarkably clear, allowing for excellent visibility. Dolphins can nav-
igate with ease, and !sh are readily visible to the naked eye, even
without activating the echolocation system. This high-visibility
environment o#ers a stark contrast to the polluted scenario, em-
phasizing the beauty and navigability of an unspoiled ocean.

Scene 2 "the Polluted Ocean" In contrast, the “Polluted Ocean”
scene presents a dark and deteriorated underwater environment.

Figure 5: (a) A visualization of dolphin echolocation in a
polluted marine environment with reduced visual clarity.
(b) In the polluted ocean, sonar feedback may be disrupted,
causing the dolphin to mistakenly identify debris as food.
(c) It becomes increasingly di#cult for the dolphin to locate
actual food sources. (d) Failure to capture su#cient food
within the allotted time results in the dolphin’s death.

The water appears greenish and is !lled with suspended parti-
cles and debris, signi!cantly reducing visibility. Coral reefs seem 
bleached or fragmented, while plastic waste and unidenti!ed pol-
lutants drift among the remnants of seagrass. In such conditions, 
visual navigation becomes challenging, as !sh are no longer eas-
ily visible to the naked eye. The dolphin must rely heavily on its 
echolocation system to detect nearby objects. However, the sonar 
feedback is frequently disrupted by non-biological obstacles such 
as plastic bags and bottles, which may be mistakenly identi!ed as 
prey (as Fig.5(b) and (c)). This degraded environment is designed to 
evoke a sense of urgency and empathy, highlighting the impact of 
marine pollution on both aquatic life and sensory-based navigation.

4 Conclusion and Future Works
EchoSense explores how forehead-mounted vibrotactile feedback 
can simulate sonar-based spatial perception in VR, enabling users to 
navigate and interact through embodied, non-visual cues inspired 
by dolphin echolocation. The system o#ers a novel multisensory 
interface that fosters empathy and environmental awareness. In 
future work, we plan to evaluate user performance and emotional 
engagement through controlled studies, and explore adaptive feed-
back and bio-integrated sensing to expand biomimetic interaction 
in XR.
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