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Abstract
We present NapWell, a Sleep Assistant using virtual reality (VR) to decrease sleep onset latency by providing a realistic 
imagery distraction prior to sleep onset. Our proposed prototype was built using commercial hardware and with relatively low 
cost, making it replicable for future works as well as paving the way for more low cost EOG-VR devices for sleep assistance. 
We conducted a user study ( n = 20 ) by comparing different sleep conditions; no devices, sleeping mask, VR environment 
of the study room and preferred VR environment by the participant. During this period, we recorded the electrooculography 
(EOG) signal and sleep onset time using a finger tapping task (FTT). We found that VR was able to significantly decrease 
sleep onset latency. We also developed a machine learning model based on EOG signals that can predict sleep onset with a 
cross-validated accuracy of 70.03%. The presented study demonstrates the feasibility of VR to be used as a tool to decrease 
sleep onset latency, as well as the use of embedded EOG sensors with VR for automatic sleep detection.
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1 Introduction

Sleep, like eating and drinking, is biologically imperative 
to all living beings, while also carrying other benefits like 
improving one’s memory and cognitive abilities (Milner and 
Cote 2009). Power naps specifically show us that sleeping 
can improve alertness, productivity, and mood which is espe-
cially useful in scenarios like night shift work or prolonged 
driving sessions (Mednick et al. 2002). However, many mod-
ern technologies prevent us from taking a nap by providing 
mental stimulation, sudden notifications, as well as modify-
ing light-based cues (e.g. increased blue-light after sunset 
which can promote alertness). Many efforts have been made 
to use technology to fall asleep faster, from pharmacological 

agents to mechanical and physiological efforts such as cor-
tical electrical stimulation and acoustic stimulation (Davis 
et al. 1939; Lee et al. 2019; Akert et al. 1951). However, 
while these technologies attempt to directly influence the 
nap time for a user, they do not control the environment the 
user sleeps in nor do they improve a users’ sleep hygiene 
(how routine and effective sleep is for a person). One criti-
cal element to sleep hygiene in power naps is a proper nap 
environment, free of too much mental stimulation, little (if 
any) blue light, and be comfortable and/or familiar (Muzet 
2007). This kind of environment may be hard to achieve 
in the physical world, especially in circumstances where a 
person is traveling, wishes to nap in a crowded space (e.g. 
an airport) or in an office or workplace. Most of us resort to 
imagery distraction to place ourselves mentally elsewhere 
to cope with such a situation (Harvey and Payne 2002). A 
common solution could be to simply wear noise-canceling 
headphones, or listen to some soft audio that suits the imag-
ined environment.

In this work, we present a study to understand if VR 
environments can assist in imagery distraction by provid-
ing a virtual environment prior to the nap to decrease our 
sleep onset latency (time taken to transit from wakeful-
ness to sleep). During the nap, we log the participants’ 
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eye movements using electrooculography (EOG) while 
employing a behavioral finger tapping task (FTT) task to 
detect sleep onset time ground truth. We also used the 
gathered EOG signal to train a machine learning model 
for automatic sleep onset detection. This allows us to 
conceptualize an all-in-one prototype VR head-mounted 
display (HMD) that can automatically detect sleep onset 
using embedded sensors in the HMD itself. Below are the 
contributions of this work:

1. We conducted and present results of a pilot survey 
( n = 157 ) to determine the sleep habits and preferred 
nap environments.

2. We present to our knowledge the first study ( n = 20 ) 
exploring the effects of VR on sleep using both physi-
ological and behavioral measures.

3. Our study shows that VR can significantly reduce sleep 
onset latency compared to no devices at all, and on 
average also provided longer sleeping time and lesser 
drowsiness onset latency.

4. We conceptualize a VR prototype with integrated EOG 
sensors and a machine learning model that can automati-
cally detect sleep onset with a cross-validated accuracy 
of 70.03%.

2  Related Work

In this section, we look into the past decades of work that 
focused on understanding the parameters that influence our 
sleep quality and sleep pattern. HCI research has touched 
on improving sleep before, such as work by Liang and Plo-
derer (2016) and Ehleringer and Kim (2013) who investi-
gated if commercial wearable devices improve sleep and 
the possibility of a wearable device to improve sleep qual-
ity for dementia patients, respectively. There are several 
good overviews regarding sleep assessment, the benefits 
of sleep, and pervasive technologies related to sleeping 
(Schmidt et al. 2012; Ibáñez et al. 2018). There are also 
some contactless sleep tracking works using smart home 
infrastructure (Adib et al. 2015). SleepThermo (Katsumata 
et al. 2019) was a wearable device that monitors body tem-
perature with respect to sleep quality. Shirazi et al. (2013) 
use an alarm clock smartphone application to track and 
share sleep behavior. There are other works that use smart-
phones or fitness trackers for sleep quality tracking (Min 
et al. 2014; Choe et al. 2015).

Closest to our work, Kitson et al. explore lucid dream-
ing as a tool for introspection in Virtual Reality (Kitson 
et al. 2018). Semertzidis et al. (2019) also explore the 
pre-sleep state, yet in a much more artistic and qualitative 
evaluation. We see our work as being complementary to 

this research, as we are evaluating sleep onset and utilize 
EOG (compared to EEG in Semertzidis et al.’s study). In 
this work, we mainly focus on the various sleep detec-
tion methods used and VR’s effect and immersion on the 
human mind.

2.1  Sleep detection

When someone falls asleep, several markers are present 
such as a decrease in attention and change in physiologi-
cal signals (Ogilvie 2001). In most related work, meth-
ods to detect sleep onset largely fall into two categories; 
physiological and behavioral-type methods (Scott and 
Lack 2017). Physiological detection refers to the use of 
physiological signals such as electrooculography (EOG), 
polysomnographic (PSG) (gold-standard for sleep studies), 
electroencephalogram (EEG), and so on to detect sleep 
onset. Detecting sleep onset can be a complicated and 
costly process, usually conducted only at traditional sleep 
labs with expensive PSG equipment and a trained special-
ist. PSG detects sleep onset specifically based on a reduc-
tion of alpha waves and the dominance of low voltage 
waves (Berry et al. 2012). However, there has been some 
related work on using simple EEG electrodes which are 
cheap and easily accessible to detect sleep onset (Zhang 
et al. 2014). EEG has also proven to be reliable enough 
to even detect microsleep (Rothkrantz 2016). However, 
signals from EEG require intense filtering due to noise. 
Otherwise, other more invasive methods are required, 
such as implants through the skull for a better signal-to-
noise ratio. There have also been low-cost approaches with 
relatively high accuracy, such as the use of commercially 
available heart rate sensors (Okamura et al. 2016). How-
ever, one of the earliest approaches used to detecting sleep 
is to recognize the rapid eye movements (REM) via elec-
trooculography signals (Boukadoum and Ktonas 1986). 
Both EEG and EOG are non-invasive measures; however, 
EEG signals try to measure the brains potentials though 
a thick skull and are thus affected by the wearer’s full 
physical and physiological state. In contrast, EOG senses 
the electrical potential difference between the cornea and 
the retina only, leading to overall less noisy signals. When 
coupled with a head-mounted wearable, this will cause 
more issues for EEG as well, since a minor shift in elec-
trode placement due to the straps on the head will lead to 
noisy signals once again (Gupta et al. 2020). EOG need 
only be in contact with the user’s face. Furthermore, AR/
VR head-mounted displays are often in contact with the 
face, making EOG a more logical approach. EOG has also 
proven to be able to outperform EEG-based methods in 
sleep stage classification (Rahman et al. 2018).

Behavioral detection, on the other hand, can be further 
divided into two categories; active and passive. Active 



Virtual Reality 

1 3

behavioral detection refers to assigning a task that requires 
minimal effort for the participant to perform while trying 
to fall asleep. Once he/she stops performing it, that time 
is registered as the sleep onset time. It was first proposed 
by Blake et al. (1939) who asked his participants to hold 
a spoon when falling asleep. Once the spoon dropped, 
the time was recorded as sleep onset, which also corre-
lates with a drop in alpha waves of the brain. Reaction 
time (RT) tasks are also often employed for this detection 
method (Liberson and Liberson 1966; Ogilvie and Wilkin-
son 1984). RT generally relies on audio feedback, where 
the participant needs to react to audio stimuli. However, 
one key issue with active behavioral detection is that there 
is a possibility for the stimuli to instead disrupt the process 
of falling asleep (Ogilvie 2001). This is evident, especially 
when employing RT because it promotes “readiness” from 
the participants, which increases arousal (Ogilvie and 
Wilkinson 1988). This resulted in the introduction of pas-
sive behavioral detection which refers to gathered sensor 
data from user behaviour, usually actigraphy which is the 
use of inertial sensors. Another approach used a pressure 
mattress to analyze the heat map of the user’s sleeping 
posture and behaviour (Metsis et al. 2014). There have 
also been studies for detecting long-term sleep patterns 
using a combination of inertial, ambient light, and time 
data (Borazio and Van Laerhoven 2012). However, this 
does not mean that the passive approach is superior to 
the active, because the recent introduction of devices and 
applications that uses very discreet stimulus and requires 
very minimal response significantly reduces any disruption 
to sleep onset (Scott and Lack 2017).

Between physiological and behavioral sleep detection, 
both methods have a reasonable degree of accuracy. With 
PSG being the gold standard yet not easily accessible, 
behavioral methods have only shown a small difference of 
about 2 to 3 min (Connelly 2004; Lack and Mair 1995; Scott 
et al. 2018). This is due to a slight discrepancy that exists 
between sleep onset for physiological signals and behav-
ioral activities. People can still possibly give a behavioral 
response to a stimuli even after PSG has determined sleep 
onset because most people only stop responding during the 
beginning of N2 sleep (Ogilvie and Wilkinson 1988; Ogilvie 
et al. 1989). One area where active behavioral sleep detec-
tion is potentially more beneficial than both physiological 
and passive behavioral methods is for short power naps, 
because the signals gathered using the other two methods 
require signal processing steps, whereas active methods 
are relatively instantaneous simply by observing the user’s 
response to stimuli. However, it is still possible for actigra-
phy to detect naps with relatively high accuracy if the nap 
duration is at least 30 min (Kanady et al. 2011). Sleep onset 
time can be complex because it is a dynamic process marked 
by the change on both physiological and behavioral states 

at different points in time. In this study, we actually use an 
active behavioral task to first detect sleep onset when nap-
ping, then use that data as a label for a physiological-based 
detection, allowing our final prototype to the best compro-
mise between them.

Regarding the factors that influence sleep, the primary 
reason that led us to want to understand the effects of VR 
towards sleep onset is due to imagery distraction in sleep 
studies. Imagery distraction was a proven method to help 
insomniac patients fall asleep (Harvey and Payne 2002). 
This is because imagery distraction occupies the cognitive 
space that prevents the participant from re-engaging with 
worrisome thoughts that causes insomnia. This brings us to 
the use of VR, which is very similar to imagery distraction in 
that, it is capable of placing us virtually into another space. 
However, it has, to our knowledge, never been used as a 
sleep-assist tool, though the closest literature we can find is 
for stress relief and meditation.

2.2  Sleep assist tools

There has been a myriad of methods employed by people 
to aid them in their sleep, either with the use of devices or 
through some form of sleep ritual. Typically, it is advis-
able to alter one’s habit, such as not sleeping too late, doing 
more exercise, eat healthily and so on Brown et al. (2002), 
yet there will always be times where an external device or 
stimulus is preferable.

An eye or sleep mask is one of the most common tool 
to assist sleep. It does not serve as a stimulus, but rather to 
further block out light that can suppress melatonin. Stud-
ies have shown that a sleep mask can result in more REM 
time, shorter REM latency, less arousal, and elevated mela-
tonin levels (Hu et al. 2010). It was also found to be able to 
reduce long awakenings for patients in intensive care units 
(Demoule et al. 2017; Yazdannik et al. 2014). Additionally, 
patients with acute coronary syndrome also found sleep 
masks to be a cheap and viable method over drug therapy to 
increase sleep quality (Daneshmandi et al. 2012). This has 
led to works like the Smart Eye Mask (Matsui et al. 2017) 
that integrated photo-reflectors into sleep masks to classify 
sleep stages. This method, however, adds bulk and weight 
onto the eye mask which was meant to be light and soft. 
Another potential negative impact of eye masks is that they 
press against the user’s eyes, leading to possible discomfort 
on the eyes.

One of the most common tool is to use audio stimulus via 
binaural sounds to induce sleep. When an acoustic beat of 
two tones is played in each ear simultaneously, the generated 
binaural beat induces brain signals that can assist in sleep 
(Lee et al. 2019; MORALES-COBAS et al. 1995). Several 
researches look into this specific frequency, such as by Jirak-
ittayakorn and Wongsawat (2018) who found that binaural 
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beat at 3Hz and found sleep latency to be relatively shorter. 
A lot of these works, like the sleep mask, also specifically 
target those with health conditions that prevents them from 
sleeping. Pedemonte et al. (2014) used auditory feedback 
during sleep to treat participants with idiopathic tinnitus and 
found significant changes in the brain activity. Audio feed-
back remains a popular choice for sleep assistance because 
the responsiveness of the auditory system during sleep is 
still partially preserved (Peña et al. 1999).

2.3  VR for stress relief, therapy, and meditation

The perceived environment and atmosphere can greatly 
influence a person’s cognitive performance, mood, and phys-
iology (Zhao et al. 2017). Even though studies regarding the 
use of VR on sleep is relatively rare to our knowledge, the 
most relatable use cases would be for stress relief, therapy, 
or meditation. For example, post-traumatic stress disorder 
(PTSD) can occur as a result of a disastrous event or expe-
rience and has been studied most in war veterans. PTSD 
symptoms include sleep disruptions (next to a multitude of 
other indicators). Studies with Vietnam War veterans in VR 
to desensitize the life-changing event showed that this treat-
ment can significantly decrease their symptoms including 
sleep disruptions (Rothbaum et al. 1999).

There is also a lot of work using virtual reality and mixed 
reality for relaxation, stress relief, and mindfulness training 
(Kosunen et al. 2016; Amores et al. 2016; Roo et al. 2017; 
Bernardino et al. 2016). We see our work complementary, 
as we focus directly on naps and the impact of VR on nap-
ping properties.

Meditation can be relatable to naps because it requires the 
user to be in a calm state of mind. For example, RelaWorld 
(Kosunen et al. 2016) combines neurofeedback with VR as a 
meditation system to induce deeper relaxation, feeling of the 
presence, and a deeper level of meditation. For therapy, VR 
has consistently been used especially for exposure therapy 
for phobia treatment (Powers and Emmelkamp 2008), to 
mental and eating disorders (Ferrer-Garcia et al. 2013).

Both meditative experiences and therapy can also be 
combined, such as the development of the Meditation Cham-
ber (Shaw et al. 2011). This device uses immersive virtual 
environments with biofeedback technologies (galvanic skin 
response and heart rate) to reduce stress and anxiety. The 
main negative feedback, though, was that the weight of the 
device hampers the experience. A recent work employed 
the use of VR for meditative walks as a way to treat chronic 
pain (Gromala et al. 2015). The developed virtual meditative 
walk (VMW) provides a peaceful environment with chang-
ing weather that depends on the user’s physiological state.

The effects of VR on the human mind are primarily due 
to the sense of the presence it simulates, as this aids in per-
ception and consciousness (Sanchez-Vives and Slater 2005). 

Cognitively, we know that we do not exist at a virtual space, 
but sub-consciously, we respond to it. Therefore, we wish to 
emulate this effect in our study on understanding the rela-
tionship between VR and naps. How can VR influence sleep 
onset time, and how to conceptualize a prototype HMD for 
this purpose?

3  Behavioural sleep and drowsiness onset 
detection

The first step in this work would be to detect sleep onset 
accurately. As seen from related work, it can be challenging 
to detect sleep onset without access to any specialized hard-
ware. More lightweight detection as proposed by Okamura 
et al. (2016) use a smartphone application with the specific 
intention of detecting sleep onset. Their work uses finger 
tapping during a beep or vibration where, if the user does 
not do so after 4 indications, the system perceives the user 
to have fallen asleep and the application records the time. 
We used a similar approach, the finger tapping task (FTT) 
proposed by Casagrande et al. (1997). It is proven to be bet-
ter than an auditory-based reaction task since it interferes 
less with the sleep onset process and thus reduces arousal.

We developed an FTT smartphone application, as shown 
in Fig. 2 that requires the user to tap the screen continuously. 
The smartphone was strapped to the participant’s preferred 
hand using a velcro strap to make it effortless to hold and 
easily accessible (Ogilvie and Wilkinson 1988). The number 
of taps, tap rate, and time for each tap is then logged into the 
device. If the user does not tap for more than 300 seconds, 
then he/she is deemed to have fallen asleep (Casagrande 
et al. 1997). The user’s tapping rate also allows for drowsy 
onset detection. Since each user taps their finger at their 
own pace, we first find their average tapping speed during 
their first 50 taps. The drowsy onset time is defined as when 
the average tapping frequency decreases tenfold. We find 
this estimation of drowsy onset time to be a suitable value 
because it falls into the range of time for Stage 1 latency 
(Casagrande et al. 1997). Sleep duration can be found by 
looking at the highest number of ms between a tap without 
any interruption.

Additionally, we log certain physiological signals 
from the user during their napping duration. We chose to 
use EOG sensing extracted from the JINS MEME smart 
glasses1 as shown in Fig. 3, which is designed for everyday 
use Uema and Inoue (2017). Logging of the JINS MEME 
data is achieved via a Macbook running a Python script 
that received the data through Bluetooth with a sampling 
rate of 100Hz. To calculate EOG values, JINS combines 

1 https:// jins- meme. com/ en/.

https://jins-meme.com/en/
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the capacitance difference from the two nose pads for the 
horizontal EOG component, and the difference between 
nose pads and nose bridge for the vertical EOG component 
(Ishimaru et al. 2014). We log the EOG signal to develop a 
prototype that is able to detect sleep onset automatically. We 
present the experimental setup in the following.

4  Pilot survey

Before initiating the experiment, we first ran a survey to 
gather relevant data regarding peoples’ general sleep behav-
ior. The survey was deployed to social media platforms 
(Facebook, Twitter, WeChat, etc.) for a week. We suc-
cessfully gathered data from a total of 157 participants (52 
males) from 33 different countries (27.7% are from Indo-
nesia, and 35.5% are from the Philippines). We found that 
46.5% of the participants sleep for only 6 h every night, and 
56.7% of them believe that their sleep quality can be further 
improved. 46.5% of the respondence find it difficult to fall 
asleep. 59.9% of them are relying on some form of activ-
ity or habit to fall asleep faster at night. One of the main 
causes is work or school-related stress, followed by a noisy 
environment.

Regarding naps, only 22.3% of them take naps very or 
quite often, with the majority of them being not that often. 
The reason for taking a nap or lack thereof is related to work. 
Too much work prevents nap time, while also causing some 
of them to be too tired to work continuously. When asked to 
imagine a place where they could fall asleep more quickly, 
the top five choices are their own room (73.1%), a hotel 
room (35.9%), by the clouds (17.3%), the beach (15.4%), 
and finally a lodge by the woods (14.1%) as shown in Fig. 4. 
We believe that their own room, or a hotel room scored the 
highest because most people find these places familiar. The 
other preferences are mostly natural surroundings, supported 
by literature (Felsten 2009). We use these results for the 
basis of our selected VR environments to assist naps. The 
survey also included the Epworth Sleepiness Scale (ESS) 
Questionnaire (Johns 1991), which showed an ESS score of 
9.6 in average across our 157 participants. They fall into the 
normal range of ESS scores (majority not having any form 
of sleep disorder). We provided the link for the full results 
of our questionnaire (Bait 2019).

5  User study

To understand how VR can effect sleep onset, we design 
the experimental setup akin to taking a nap at work in the 
middle of the day.

5.1  Apparatus

For the hardware, we choose the Google DayDream View 
VR2 headset with the Asus Zenfone AR3 as our primary VR 
tool due to several reasons. A lightweight, wireless head-
set is essential to maintain the comfort of the user and to 
avoid any cable entanglement common with commercial 
VR devices tethered to a desktop computer. Secondly, the 
weight of the headset is also a primary concern. Since the 
DayDream View uses mobile VR, it is overall lighter than 
desktop connected HMDs. Finally, the DayDream View uses 
fabric and soft-like texture to ensure comfort for the user. 
The HMD is integrated with EOG sensors taken directly 
from a pair of JINS MEME smart glasses4 (Fig. 3). The sen-
sors’ vertical position is adjustable so that it just rests on the 
participant’s face and that it would be comfortable for dif-
ferent face shapes. The batteries are attached to the left side. 
The power and pairing button is attached to the right side of 
the HMD. A Macbook5 is placed on a nearby table to read 
and log the EOG signals in real-time. The chair used in the 
study is the GTRacing Gaming Chair6 that can recline back-
ward until 90◦ . The phone used for the FTT is a Samsung 
Galaxy S87, though any Android phone running Android 
5.0 and above should be compatible. For the VR conditions, 
the participants also used a pair of Sony Noise Cancelling 
headphones8 that plays the audio of the virtual environment. 
Initially, we had the participants also use the Apple Watch9 
and Xiaomi Mi Band10 for passive behavioral detection and 
compare the onset time with the FTT. However, pilot testing 
showed that they were unable to detect short periodic naps 
accurately. We, therefore, choose to exclude them.

5.2  Study design

The independent variable is the device used, with four 
distinct conditions: (1) napping without any device as a 

2 https:// vr. google. com/ daydr eam/.
3 https:// www. asus. com/ Phone/ ZenFo ne- AR- ZS571 KL/.
4 https:// jins- meme. com/ en/.
5 https:// www. apple. com/ nz/ macbo ok- air/.
6 https:// www. gtrac ingch air. com/.
7 https:// www. samsu ng. com/ global/ galaxy/ galaxy- s8/.
8 https:// www. sony. co. nz/ elect ronics/ headb and- headp hones/ wh- 
1000x m3.
9 https:// www. apple. com/ apple- watch- series-5.
10 https:// www. mi. com/ global/ mi- smart- band-4.

https://vr.google.com/daydream/
https://www.asus.com/Phone/ZenFone-AR-ZS571KL/
https://jins-meme.com/en/
https://www.apple.com/nz/macbook-air/
https://www.gtracingchair.com/
https://www.samsung.com/global/galaxy/galaxy-s8/
https://www.sony.co.nz/electronics/headband-headphones/wh-1000xm3
https://www.sony.co.nz/electronics/headband-headphones/wh-1000xm3
https://www.apple.com/apple-watch-series-5
https://www.mi.com/global/mi-smart-band-4
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baseline, (2) using a sleeping mask, (3) with a VR HMD 
showing the view of the study room itself (baseline for VR), 
and with (4) a VR HMD displaying the participant’s pre-
ferred virtual environment (includes headphones playing 
audio of the selected environment). These conditions were 
chosen by taking into consideration how each items and 
devices are used conventionally, as opposed to the sensory 
feedback provided. For example, the sleeping mask condi-
tion does not include any form of audio feedback or earplugs 
as it is being used as a standalone item (Liang et al. 2015). A 
standalone VR experience, on the other hand, often includes 
both visual and audio feedback (Jerald 2015). For all condi-
tions, the room light is left on to simulate an actual office 
working hour, as shown in Fig. 6.

For monitoring purposes, we avoided being in the same 
room as the participant when they were napping. Therefore, 
the FTT application was designed to send packets of data to 
a mobile device so that the tapping activity can be monitored 
remotely. When the tapping rate decreases, it indicates that 
the participant is feeling drowsy, and when it stops, it is an 
indication that the participant has fallen asleep.

Fig. 1  (left) An illustration of the prototype that combines EOG sensors from JINS Meme with Google Daydream, (right) and a participant of 
the study using the prototype on a reclining office chair with a smartphone for a finger tapping task to detect sleep onset manually

Fig. 2  Screen capture of the FTT application logging the time stamp, 
tap number, and tap rate

Fig. 3  Prototype used for the 
study, with embedded, adjust-
able EOG sensors shown on the 
front view, and the battery and 
power switch on the top



Virtual Reality 

1 3

5.3  Virtual environments

The prepared virtual environments for the fourth condition 
are the top 5 results from the previously conducted pilot 
survey (see Section PILOT SURVEY). Figure 5 depicts 
the different environments. Each clip is at least 15 min in 

length so that the looping is not obvious. We initially tested 
with virtual environments built with a game engine, but the 
graphical quality needs to be on par with desktop-VR to 
achieve high realism. However, we got low framerates since 
it is just running off from a mobile phone. We, therefore, 
chose to use 360◦ video instead, which maintains realism 

Fig. 4  Survey results regarding 
preferred locations to fall asleep 
easily with a sample size of 157

Fig. 5  Screenshot of the VR application, showing the (1) home 
screen with instructions to load the “own room” video into the appli-
cation, (2) the main menu where the user can select using the Day-
Dream controller, (3) the environment for the “study room” condi-

tion, (4) the “own room” condition which differs according to the 
participants’ room, (5) the “hotel room”, (6) the “by the clouds”, (7) 
the “beach”, and (8) the “lodge by the woods”
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while requiring low computing power. Participants who 
chose the “own room” environment were required to inform 
us at least a day before the experiment for the VR condi-
tion, where we lend the participant a 360◦ camera (the Ricoh 
Theta S) to capture a video of their own bed room. The 
video includes the ambient sound of the room as well. Once 
they did, we directly imported the environment into the VR 
application. Additionally, a blue-light filter was added into 
the environment to negate the effects of blue light on sleep 
onset (Green et al. 2017) (all conditions requiring the VR 
display to be on uses the filter). The dependant variable is 
the sleep onset time.

5.4  Participants

We recruited a total of 20 participants (7 female), aged 
between 22 to 29 (mean = 25.05, STD = 1.79) to partici-
pate in this within-subject study. The experiment itself is 
conducted in a regular office room to simulate naps in a 
working office environment. Each of the participants may 
freely wear any attire that they are comfortable with, and any 
restrictions were excluded. The room temperature is main-
tained between 25 to 28 degrees Celsius. The noise level of 
the study room itself is around 32dB, which is normal for 
a typical quiet room. Each participant was required to have 
at least 7 to 8 h of sleep the night before the experiment is 
conducted. Furthermore, we ensured that each of the experi-
ments is conducted at least 3 h after the participant had a 
meal, to ensure that he/she would not be affected by caffeine, 
sugar, or alcohol intake (Okamura et al. 2016). The study 
was performed according to ethical rules and regulations of 
Keio University.

5.5  Procedure

Prior to the experiment, we ask the participants about their 
preferred VR environment among the available options (their 
own room, the hotel room, being among the clouds, by the 
beach, and a lodge by the woods). We also show them a short 
preview. If they chose the “own room” scenario, we lend a 
360

◦ camera to them for a recording for 15 min so that we 
can import it into the application during the experiment day.

On the experiment day, participants filled out a consent 
form detailing personal data saved and the experimental 

setup. The recorded video for the participant’s room will 
be deleted at the end of his/her session. Each of them also 
came on four different days to participate for each of the 
conditions.

After we briefed them regarding the procedure, the par-
ticipants lie down on the reclined office chair (see Fig. 1). 
We used an angle of 40◦ for the user study because it is an 
optimal angle for naps on a reclining chair as proven by 
Nicholson and Stone (1987). Depending on the assigned 
condition, we then put on the HMD, sleeping mask, or no 
device at all, onto the participant. The FTT phone was also 
securely strapped to the desired hand with velcro where they 
are instructed to continuously tap on the screen. A nearby 
Macbook was set up to record the logged EOG data, whereas 
the FTT data are stored directly in the phone. Each partici-
pant was given a maximum period of 1 hour for taking a nap. 
For participants who have fallen asleep, the FTT data will 
indicate this based on the duration between taps. However, 
if the participant did not fall asleep, we take the maximum 
allocated time of 1 hour for the duration.

6  Results and discussion

In this section, we divide the results into two main sec-
tions; the tapping data analysis to extract sleep onset 
latency, drowsy onset latency and sleeping duration, and the 
sleep onset classification accuracy. Of the 20 participants 
recruited, 8 of them chose their own room as the preferred 
VR condition. 5 participants chose the beach side, followed 
by another 5 who chose the lodge in the woods. Only 2 par-
ticipants chose the hotel room environment.

6.1  Tapping data analysis

Figure 7 shows a sample result from a participant for the 
“preferred VR” condition. The red area represents the par-
ticipant still being awake, the period between each taps 
being about 500 ms. This illustrates how a tap data gener-
ally look for a participant falling asleep. When they start 
becoming drowsy, the yellow region shows the taps slowing 
down, with the period between each tap being about 40,000 
to 50,000 ms. This is aligned with our estimation that the 
tapping speed decreases by ten times the average tapping 

Fig. 6  The participants experi-
encing (left) the baseline condi-
tion with no devices, (middle) 
with the use of a sleeping mask, 
and (right) with VR (the “study 
room” and “preferred VR” 
condition)
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speed as it enters Stage 1 of sleep latency (Casagrande et al. 
1997). In this stage, they have not fallen asleep yet, but are in 
the transitional phase between fully awake and fully asleep. 
Finally, the green region shows that the participant had 
fallen asleep, with the tap period being above 300,000 ms. 
Following the work by Casagrande et al. (1997), this study 
defines Asleep as when the inter-tap interval (ITI) is greater 
than 300,000 ms, Drowsiness as when the ITI is between 
50,000 ms and 300,000 ms, and Awake as when the ITI is 
shorter than 50,000 ms. Figure 8 shows the ITI time course 
and the corresponding brain states (Awake, Drowsy, and 
Asleep) defined behaviorally.

The left chart of Fig. 8 shows the sleep onset latency data, 
the middle shows the maximum nap duration, and the right 
shows the drowsiness onset latency data for all 20 partici-
pants. The amount of participants that did actually fall asleep 
for each condition differs. For the “no device” condition, a 

total of only 8 participants managed to fall asleep. For the 
“sleeping mask” condition, a total of 13 participants suc-
cessfully fell asleep. Finally, for both the “VR study room” 
and “preferred VR” conditions, a total of 17 participants 
managed to fall asleep. Looking at the results for sleep onset 
latency, the average time for falling asleep in the VR study 
room and preferred VR conditions are 1,089,950 ms (18.16 
min) and 1,222,700 ms (20.38 min), respectively. These 
results are both faster than the time it took on average for 
participants to fall asleep for the conditions with no devices 
and wearing a sleeping mask, which took 2,553,550 ms 
(42.56 min) and 1,995,100 ms (33.25 min), respectively. We 
performed a Shapiro–Wilk test to determine the normality 
of our results. For the sleep onset time, we found that the 
results were significant ( p < 0.05 ), meaning that we can-
not assume normality in the data. Next, we ran the Fried-
man test and found that there was a statistically significant 

Fig. 7  A sample FTT result 
from a participant for duration 
between each tap. This is an 
extracted time window of about 
33 min

Fig. 8  Extracted results from the FTT, which shows the sleep onset latency (left), maximum nap duration (middle), and drowsiness onset latency 
(right) for all 20 participants
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difference in sleep onset latency depending on the sleep 
condition ( x2(2) = 18.648, p < 0.001 ). Post-hoc analysis 
with Wilcoxon signed-rank test was conducted with Bon-
ferroni correction applied, resulting in a significance level of 
p < 0.0125 . The median (IQR) perceived effort levels for the 
conditions with no device, sleeping mask, VR view of study 
room and preferred VR environment were 60 min (13.14 
min to 60 min), 29.21 min (10.69 min to 60 min), 8.84 min 
(6.04 min to 20.51 min), and 10.98 min (6.16 min to 30.96 
min), respectively. There were no significant differences 
between the sleep conditions of no device with sleep mask 
( z = −1.642 , p > 0.0125 ), the sleep mask with the VR study 
room ( z = −2.025 , p > 0.0125 ), or the VR study room with 
the preferred VR environment ( z = −1.16 , p > 0.0125 ), even 
though there is an overall reduction in sleep onset latency 
between no device with the sleep mask, and both VR con-
ditions with the sleep mask. However, there was a statis-
tical significant reduction in sleep onset latency between 
no devices with VR study room ( z = −2.765 , p < 0.0125 ) 
and no device with preferred VR environment ( z = −2.504 , 
p < 0.0125).

From these results, we can observe that being in VR does 
significantly decrease sleep onset latency, allowing users to 
fall asleep faster as opposed to without any devices. A par-
ticipant mentioned that since the HMD feels similar to a 
sleeping mask, he/she feels inclined to keep his/her eyes 
closed most of the time while having them on. Since the 
rendered environment was exactly that of the physical space, 
there was nothing to further distract them or to examine 
further, such as a different environment which could poten-
tially feel more exciting to view, at least for the first time. 
However, there was a lack of significance when comparing 
with the sleep mask, or with the VR baseline condition. A 
trend is visible where on average, there is a drop of sleep 
onset latency from no device, to the sleeping mask, and 
finally the VR conditions. When worn, both the sleeping 
mask and the use of VR effectively blocks any form of vis-
ual stimulus from the environment. However, VR includes 
a display that instead shows a different environment which 
may increase distraction, whereas the sleeping mask is sim-
ple but lightweight and comfortable, stated by a participant 
who preferred the sleeping mask. These factors contribute 
to the lack of significance between sleeping mask and VR. 
On the positive side, unlike the use of a sleeping mask that 
merely covers the eyes (Liang et al. 2015), VR is instead a 
combination of audio and visual stimulus, with content spe-
cifically designed to induce a sense of calmness, not unlike 
meditation or yoga (Gromala et al. 2015). Three participants 
did mention that the environment helped them imagine that 
they were there, which leads to better imagery distraction 
and sleep onset latency reduction. One participant claimed 
that he/she has been having a better sleep after participat-
ing in the experiment in preferred VR condition. Maybe the 

inclusion of a display for distraction and instilling calm-
ness is useful for sleeping. Yet, further studies are needed to 
explore the effects of the displayed environment, such as by 
experimenting with lighter HMD, more content options, and 
softer padding. Our initial assumption was that participants 
who chose the “own room” option for the VR environment 
would be able to fall asleep faster compared to those who 
chose other environments, according to Fig. 4. However, our 
results do not indicate any significance between the “own 
room” and preferred VR” condition. This could be due to 
several factors, such as the VR environments being captured 
only with a 360◦ camera, thus lacking depth and realism 
to be perceived as the actual environment completely. Sec-
ondly, the videos used for all the environment were relatively 
pixelated and low resolution, further effecting the perceived 
realism negatively.

Next, we look at the nap duration time, where a longer 
duration indicates a longer rest time. On average, the par-
ticipants slept for a maximum of 989,450 ms (16.5 min) and 
779,238 ms (13 min) for the VR in a study room and pre-
ferred VR environment, respectively. Both these durations 
are higher than the conditions with no devices and sleeping 
mask, with a nap duration of 583,364 ms (9.72 min) and 
778,734 ms (12.98 min), respectively. However, there was no 
statistically significant difference in nap duration depending 
on the sleep condition ( x2(2) = 4.296 , p > 0.05).

Finally, we repeated the procedure for the drowsiness 
onset latency. On average, the participants show signs of 
feeling drowsy for the preferred VR environment after 
296,800 ms (4.95 min). This is relatively faster than the 
other three conditions. Participants began to show signs of 
drowsiness after 490,000 ms (8.17 min), 731,000 ms (12.18 
min), and 695,000 ms (11.58 min) for the no device, sleep 
mask, and VR of study room, respectively. However, there 
was no statistically significant difference in drowsiness onset 
latency depending on the sleep condition ( x2(2) = 6.075 , 
p > 0.05).

P2 and P15 mentioned that they were able to sleep longer 
largely due to the presence of the background noise from 
the VR environments, since the visuals itself could not have 
any effect once they have fallen asleep. However, the VR 
content did help in making them feel drowsy faster, even-
tually leading to faster sleep onset. P1, who has no prior 
VR experience, did find the HMD to be heavy and made it 
harder to move around during sleep. However, he/she did 
mention that HMDs feel heavy in general, and not specific 
to our use case. When putting on the HMD, P5, P7, and P9 
mentioned that the placement of the EOG sensors causes a 
slight discomfort to the face and chose to loosen the strap a 
bit more. Additionally, P5 mentioned that he/she could only 
sleep properly while in pajamas. Only P14 mentioned that 
he/she dislikes any form of noise as well as wearing any kind 
of device while sleeping.
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6.2  Sleep onset classification

In this section, we discuss further on the use of commer-
cial EOG sensors to automatically detect sleep onset as our 
second main contribution. This solution allows an HMD 
integrated with it to be able to know when the user falls 
asleep depending on the eye movement, thus disabling the 
displayed content at the right time. This is an important issue 
to consider for a wearable sleep-assist tool. Even though our 
participants did not complain about this, it was previously 
found that audio or visual feedback still received after the 
onset of sleep increases the probability of arousal (Zhang 
et al. 2014). Yet, we look at this as the secondary contribu-
tion of the paper and an initial step towards conceptualiz-
ing NapWell as a working prototype. Even though the FTT 
procedure can be used to detect sleep onset, it is not ideal 
when suggesting NapWell as a standalone device. A predic-
tion model would be able to achieve this automatically for 
the user.

We use the previously collected EOG data, as well as 
the data from the FTT application to label it for supervised 
learning. The raw data from the JINS MEME glasses are 
3-axis accelerometer, 3-axis gyroscope, and EOG sensors 
at the left and right nose pad, for a total of 8 features. We 
then generated a sliding window with a period of 10 sec-
onds which are non-overlapping for each of these features. 
Next, we calculated the mean, standard deviation, and vari-
ance for each of these features within that time frame, for 
a total of 24 features. To reduce the dimension of the data, 
we ran the principal component analysis (PCA) procedure 
until only 6 features remain. PCA essentially creates new 

transformed dimensions based on the original data and the 
desired amount of output dimensions11. This includes the 
most dominant trend from the data samples (Masai et al. 
2018). After that, we filtered the features using the moving 
average filter. Finally, we fed the features with a train-test 
split of 80–20 into a logistic regression classification algo-
rithm. The splitting was performed prior to PCA to avoid 
any biases from the test data, where we split depending on 
participant (data from 4 random participants out of 20 were 
selected as test data).

From the test results of our model, we obtained an 
accuracy of 82.88% with the full confusion matrix shown 
in Table 1 and details shown in Table 2. The errors in the 

Fig. 9  Envisioned prototype with (1) adjustable EOG sensors and 
face cushion, (2) an outward display showing the sleep mode and 
remaining period, (3) integrated headphones, (4) the home screen 

showing several napping durations, and (5) the selection screen pre-
senting 8 choices of VR environments

Table 1  Confusion Matrix

Predicted Awake Predicted Asleep

True Awake 596752 0
True Asleep 146196 110698

Table 2  Results of the main classification metrics

Precision Recall f1-score support

Awake 0.80 1.00 0.89 596752
Asleep 1.00 0.43 0.60 256894
Average/Total 0.86 0.83 0.80 853646

11 https:// scikit- learn. org/ stable/ modul es/ gener ated/ sklea rn. decom 
posit ion. PCA. html# sklea rn. decom posit ion. PCA. fit_ trans form.

https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html#sklearn.decomposition.PCA.fit_transform
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html#sklearn.decomposition.PCA.fit_transform
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classification are mainly due to false positives of the detec-
tion. There are no false negatives. To validate the accuracy, 
we ran the model through K-fold cross-validation with K = 6 
and obtained an average accuracy of 70.03%. Some of the 
contributing factors are due to the tightness of the worn 
HMD. To obtain better data with less noise, the HMD should 
ideally be as tight as possible. The misclassifications could 
possibly be due to if the HMD was loose on the head of the 
user for comfort as mentioned by some of the participants 
(the EOG not having full contact). To improve this in future 
works, we should make a signal check before starting the 
nap, to make sure the signal to noise ratio is better. Never-
theless, we believe this model can be further improved in 
future iterations.

6.3  Conceptual prototype

Based on the obtained results, this section conceptualizes 
it into a prototype. The key takeaway from the results are: 

1. VR environments do improve sleep onset time. The 
“own room” VR option was the most popular choice.

2. embedded EOG sensors can detect sleep onset with 
relatively high accuracy, though one needs to adjust the 
EOG sensors

From these finding, we illustrated a HMD prototype shown 
on Fig. 9 that is meant to maximize comfort with soft face 
and ear paddings. The EOG sensor is sponge or textile-based 
so that it can be pressed firmly on the face without discom-
fort (Krishnan et al. 2018) and its position is highly adjust-
able to accommodate different faces. We also conceptual-
ize an outward display showing remaining nap time, which 
could be useful at office environments. The user will first be 
presented with an interface that shows a room environment, 
with 3 separate options for different nap duration. After 
selecting an option, the next page shows up to 8 choices 
of virtual environments to choose from. The “own room” 
option will allow users to upload their own 360◦ video of 
their room if they have one. The system then automatically 
detects sleep onset based on a generalized pre-trained model 
suggested in section 6.2, without the need to perform the 
FTT procedure.

7  Limitations and future works

To further improve this study, we suggest experimenting 
with different kinds of HMD, as well as a higher resolution 
for the video. Even though Google Daydream itself is light 
(around 450 grams), the use of a mobile phone for VR dis-
play makes the content more pixelated. The EOG electrodes 
should also be softer, such as a sponge or textile-based 

material to be more comfortable (Krishnan et al. 2018). The 
use of a VR HMD for sleep undeniably adds bulk and weight 
to the user’s face, though unlike a sleep mask, it does not 
press against the eyes directly. A custom HMD that mounts 
on the head and can be flipped down with minimal face con-
tact, such as the Lynx12 headset design, could help reduce 
weight and increase comfort. In the next phase, we plan to 
perform the user study for proper night sleep in a sleep lab. 
We also plan to use PSG equipment to obtain more accurate 
physiological signals that can ascertain the sleep quality of 
the participants.

When recruiting the participants, we ask that each of 
them have a gap of 3 h since their last meal, as proposed 
by Okamura et al. (2016). However, there are also studies 
that showed that sleep might be best induced when we are 
well fed and with low cognitive load (Wells et al. 1997). We 
also did not monitor what the participants did within that 3 
h gaps; for example, some participants could have went for 
a jog, thus being more tired and susceptible to being sleepy. 
Future studies may include methods to measure a user’s 
blood sugar and cognitive load level prior to the experiment.

As mentioned previously, the independent variable in the 
proposed experiment is not the different sensory feedback 
modality, but rather regarding the use of different device 
and its affect towards sleep onset. For our future works, we 
would like to extend this by investigating how each sensory 
feedback as well as the combination of feedbacks can affect 
sleep onset.

On the VR experience side, our study was only limited 
to five environments which we established from the pilot 
survey. Yet, each individual has their own specific prefer-
ence regarding the VR environment they choose as their 
sleep assist tool. Therefore, future iterations of NapWell will 
look into (1) a VR environment creator that allows users to 
easily build and deploy their preferred environment, and (2) 
a method to easily share user-created content so that users 
of NapWell who share the same preferred environment can 
upload their creation to our dedicated servers to share with 
other users. Furthermore, we consider this work as a pre-
liminary study towards using VR imagery to promote sleep. 
Future works can look into how each environment can be 
further manipulated based on the EOG data, such as adding 
dynamic relaxing imagery or other sleep-inducing patterns 
depending on the eye’s saccades and blink rate.

8  Conclusion

We propose NapWell, an EOG-based sleep assistant that 
is integrated into VR HMDs to reduce sleep onset latency. 
We first conducted and presented a pilot survey from 157 

12 https:// lynx-r. com/.

https://lynx-r.com/
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participants to establish the sleep habits and preferred nap 
environments of the general public. We then presented a 
user study that explores the effects of VR on sleep using 
both physiological and beahavioral measures. We found that 
VR can significantly reduce sleep onset latency compared to 
using no devices while also providing overall longer sleep 
time and lesser drowsiness onset latency. Finally, we con-
ceptualized a low-cost VR prototype with integrated con-
sumer-ready EOG sensors. Our machine learning model 
could detect sleep onset win a cross-validated accuracy of 
70.03%. The conducted experiment and conceptualized pro-
totype serve as a first step towards the broader concept of 
introducing VR as a sleep-assist tool. We showed that VR 
was able to influence sleep by reducing sleep onset latency 
during naps by augmenting the perceived environment of 
the user.
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