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ABSTRACT

We propose the use of face-related gestures involving the movement
of the face, eyes, and head for augmented reality (AR). This tech-
nique allows us to use computer systems via hands-free, discreet
interactions. In this paper, we present an elicitation study to explore
the proper use of facial gestures for daily tasks in the context of a
smart home. We used Amazon Mechanical Turk to conduct this
study (N = 37). Based on the proposed gestures, we report usage sce-
narios and complexity, proposed associations between gestures/tasks,
a user-defined gesture set, and insights from the participants. We also
conducted a technical feasibility study (N = 13) with participants
using smart eyewear to consider their uses in daily life. The device
has 16 optical sensors and an inertial measurement unit (IMU). We
can potentially integrate the system into optical see-through displays
or other smart glasses. The results demonstrate that the device can
detect eight temporal face-related gestures with a mean F1 score of
0.911 using a convolutional neural network (CNN). We also report
the results of user-independent training and a one-hour recording of
the experimenter testing two of the gestures.

Index Terms: Human-centered computing—Interaction tech-
niques; Human-centered computing—Ubiquitous and mobile com-
puting design and evaluation methods

1 INTRODUCTION

When communicating with people, we often use facial expressions
and non-verbal gestures to implicitly convey our intentions or influ-
ence their responses [46]. In interactive experiences, as envisioned
in augmented reality, we require more discrete, implicit interac-
tion modalities. In our research, we explore the use of non-verbal
communication, especially facial gestures, in augmented reality and
ubiquitous computing contexts.

As we see more and more augmented reality applications from
research being applied in everyday life, we assume a larger adoption
of optical see-through head-mounted displays (OST-HMDs). In
scenarios, where OST-HMDs are used, facial gestures might be a
natural interaction modality. The face is already augmented, adding
sensors to the HMD seems simple (especially the optical sensors we
use in our research), and other technology might seem cumbersome.
One can imagine smartphones or remote controllers as common
input devices, yet the user needs to carry them around, and they
cannot be used ”hands-free.” A touch-bar or buttons on the HMD
are other solutions, yet they have quite limited areas to deal with and
might result in socially awkward interactions. Several virtual reality
(VR)/AR headsets opt for mid-air input techniques (e.g., HoloLens).
Yet, they require space and can lead to muscle fatigue. In addition,
voice commands can be used hands-free, but they might also be
socially awkward and cannot be used in noisy environments. Over-
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Figure 1: We defined face-related gestures used to perform daily
tasks in an elicitation study. Then, we verified the gestures’ technical
feasibility using smart eyewear.

all, we believe that future AR/VR headsets will use a combination
of these approaches. We are contributing an exploration of facial
gestures and a simple, low-cost, effective, and resource-constrained
prototype system to this end.

A lot of research efforts have focused on designing interactions
to be more explicit and obvious for bystanders to understand. We
are exploring the opposite direction and investigating how to make
interactions more subtle and discreet. This paper focuses on the face
as an input modality. Facial gestures can be subtle, and we can use
them to operate devices intuitively, similar to communicating non-
verbally with other people. Moreover, facial gestures do not require
the use of the hands and are appropriate for noisy environments.

To explore the design space of face-related gestures, we con-
ducted a gesture elicitation study.This method aims at improving
the usability of performing gestures by incorporating feedback from
users. We defined face-related gestures (Figure 1) as any gestures
that involve the movement of the facial muscles, eyes, or head or a
combination of these movements. We excluded hand-to-face manip-
ulation since it was already explored in other studies [31, 55].

For the study, we first created a design reference by conducting
interviews and obtaining feedback regarding the difficulty of design-
ing face-related gestures from scratch in a preliminary study. Then,
we chose 15 daily mobile tasks based on previous work [52, 55]
and the context of smart homes. An elicitation study was conducted
online using Amazon Mechanical Turk (MTurk) (N = 37). We coded
the proposals into facial action units (AUs) using the Facial Action
Coding System (FACS) [14] and made a user-defined gesture set
that summarizes frequently proposed gestures for each task. Then,
we examined the gesture set’s technical feasibility using smart eye-
wear with optical sensors following the principle used by Masai et
al. [40, 41]. Considering possible integration with OST-HMDs, we
adopted a glass-shaped optical sensing system [39, 64]. This work
demonstrates the potential of face-related gestures for interacting
with smart devices using an optical sensing system.

The contribution of this work is as follows:

• We explored the use of face-related gestures for daily mobile
tasks. We conducted a gesture elicitation study via MTurk (N=
37). We summarized the findings and developed a user-defined
set of face-related gestures based on these insights.
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• We adopted a CNN approach to wearable sensor data for tem-
poral face-related gesture detection and classification. Then,
we evaluated the technical feasibility of detecting and classify-
ing the eight kinds of temporal facial gestures included in the
user-defined set. We achieved an F1 score of 0.911, with 13
participants.

• We conducted a one-hour false-positive study for two types of
gestures to show the possibilities for using face-related gestures
in real life.

2 RELATED WORK

Our work builds on the research areas of user-defined gestures, hand-
to-face input, and facial gesture input methods.

Before the emergence of the concept of user-defined gestures,
gesture sets were developed primarily by system designers. They
focused on technical feasibility more than how users behave. Thus,
these gesture sets have tended to be complex and not very intuitive.
Wobbrock et al. conducted a guessability study and employed users
in the design of gestures [63]. They showed participants a referent
(i.e., the computational effect to be caused by using a gesture, such
as playing music) and asked them to create a sign (i.e., a symbol
to activate the referent). According to Morris et al., a gesture set
proposed by users is preferred to a gesture set designed by human-
computer interaction researchers [44]. User-defined design is now
a standard method and applied in a wide range of domains, such
as as mobile tasks [52], smartwatches [5], augmented reality [47],
and television control [58]. Furthermore, studies were conducted
on gestures utilizing various body parts, such as the head [65], the
upper limbs [61], a single hand [8], and the feet [15]. The method
works well even when users are unfamiliar with the gestures.

In terms of HMDs, many recent studies proposed hand-to-face
input methods using elicitation techniques [13, 31, 55]. Serrano
et al. [55] conducted a guessability study of hand-to-face inputs,
finding that the cheek is a promising area regarding possible inputs.
Lee et al. [31] conducted a similar study and focused on social
acceptability by running the experiment in a cafe. They summarized
five design strategies for the inputs based on the results. Both
researchers validated their techniques by making prototypes that
enable inputs using the cheek, ear, and jaw. Dierk et al. conducted
an elicitation study focusing on the use of hat technology as an
interaction modality [13]. Their consensus gesture set included
touching a hat in addition to head gestures.

Some studies have utilized the surface of the device [20, 62], and
researchers have also proposed hand-to-face input techniques from
the perspective of technical feasibility [9, 25, 32, 42, 64]. Yamashita
et al. attached an optical sensor array to an HMD to allow gesture
inputs via the cheek [64]. Similarly, Kikuchi et al. used an optical
sensor array integrated into an earphone to enable gesture inputs
via the ear [25]. Hand-to-face gesture recognition with eyewear
devices has also been done using electrooculography (EOG) [32] or
an optical sensor array [42]. Furthermore, Loorak et al. proposed a
hand-to-face input method using a smartphone camera to improve the
smartphone user experience [34]. Vega et al. proposed an interface
for sending an input command to a computer utilizing capacitive
touch sensors and by touching hair extensions [59]. Researchers
have designed a user-defined gesture set for hand-to-face inputs that
have undergone considerable technical verification. While hand-to-
face input is effective, especially in an eyes-free context, hygiene
concerns about touching the face remain. We focused on face-related
gestures, which are suitable for hands-free settings.

Researchers have developed various techniques to detect facial
movements [10, 30, 45]. The typical way to detect facial gestures is
a computer vision approach [37], which mostly focuses on emotion
recognition. Jota and Wigdor explored the design space of eyelid
gestures using a commodity camera and proposed various appli-
cation cases [23]. S̃pakov and Majaranta introduced a hands-free

interaction system combining gaze pointing and head gestures [60],
while Gizatdinova et al. utilized face and visual gesture detection
to manipulate a scrollable virtual keyboard [17]. However, a vision-
based approach is limited to specific spaces as it is influenced by
lighting and obstacles and has bulky processing systems.

Considering the context of mobile tasks in daily life, we focus
on a wearable solution. For head gestures, the use of HMDs for
the mobile context has been proposed [11, 65]. The use of head
tilting gestures for mobile interaction is explored in detail in terms
of the head tilt angle and velocity using three-axis accelerometers
and magnetometers attached to a hat [11]. Rantanen et al. presented
a prototype to detect frowning and eyebrow lifting using capacitive
sensors [49]. Wearable EOG glasses allow the wearer to use eye
movements as an input modality [7, 12, 22]. Kanoh et al. presented
eyewear to detect eye movements using three EOG electrodes in
an unrestricted way [24]. The same device was used to recognize
kiss gestures to obtain passive context sensing and awareness [33].
Manabe et al. developed an earphone-based input device utilizing
bio-potential electrodes that can detect eye gestures [36]. Many
studies have focused on the use of various facial gestures as input for
wearable devices. Expression Glasses use piezoelectric sensors to
detect interest or confusion from a facial expression [54]. Masai et al.
classified the primary emotion of facial expressions using eyewear
with embedded optical sensor arrays [40]. They also developed an
eye-gesture classification system using the eyewear [38]. Iravantchi
et al. created hand and face gesture recognition prototypes using
acoustic interferometry [21]. Their face mask classified eight facial
gestures with high accuracy and was implemented to fit HMDs. Ros-
tamina et al. detected upper facial action units using EOG-based
eyewear [51]. Goel et al. proposed a tongue-in-cheek method to
detect lower facial gestures using a non-contact X-band Doppler
integrated into a headphone [18]. Regarding mouth movement ges-
tures, a silent speech interface has been proposed [16, 27]. Some
researchers have considered gesture sets that combine head, facial,
and eye gestures. Matthies et al. developed earphone-like devices
to detect 25 face-related gestures using electric sensing technolo-
gies [43]. Their Earfield sensing technique uses a contact-based
four-electrode earplug. Our approach works for cases where ear-
phones/earplugs might not be acceptable, and our sensing system
does not require contact. The gesture set for the Earfield sensing
technique includes facial, eye, and head gestures, focusing on one
participant only. Based on its technical performance (90% accuracy
in stable conditions), they developed five gestures that can be used in
real-world scenarios. Amesaka et al. utilized an internal sound in the
ear canal to classify 21 facial expression states [3]. Their methods
showed high accuracy in classifying lower facial expression changes
and head tilting. The CanalSense system can recognize jaw, face,
and head movement using barometers embedded in earphones [4].

Although many techniques have been developed to recognize
facial gestures utilizing various sensors, we do not yet know which
facial gestures are suitable for specific tasks. Also, only a few
devices can handle multiple face-related gestures simultaneously.
Therefore, we propose a user-defined design of facial-related ges-
tures for daily mobile tasks and develop a wearable solution that
recognizes face-related gestures using a minimally invasive eyewear
device with a sensing system that can be integrated into OST-HMDs.

3 APPROACH FOR DEFINING THE GESTURE SET

In this section, we describe the protocol of the guessability study
and its outcome. Our primary goal is to define a usable face-related
gesture set for daily mobile tasks and create guidelines for designing
such gestures. Unlike typical guessability studies [52, 61, 63], we
used two-stage studies, which are inspired by Yan et al. [65]. First,
we ran a study to understand users’ conceptual models and explore
taxonomies to help design face-related gestures. This study included
an interview with local students and an online survey. Next, we
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conducted an online elicitation study. We analyzed the data and sum-
marized the implications of designing face-related gestures. Finally,
we decided a suitable gesture set for daily mobile tasks.

Face-Related Gestures We defined face-related gestures as
gestures that can be made using movements of the facial muscles,
eyes, and head. Most of them can be described using the FACS [14].
We excluded hand-to-face gestures because they have already been
explored in previous studies [31, 55]. Face-related gestures meet
the gesture criteria, as they are natural, easy to perform, and memo-
rable [63]. First, facial gestures are natural since we use the face in
daily communication. Second, they are easy to perform, as we can
explicitly control the facial muscles. Third, they are intuitive and
memorable because we can use various association techniques, such
as the feelings produced by particular tasks and product metaphors.
Users can associate the emotion of a facial expression with the one
related to a specific task. Besides, this approach allows subtle, hands-
free inputs regardless of environmental noise. The gestures can be
performed by users who cannot speak or move their hands. We
explore the use of face-related gestures as few studies have explored
how people use such gestures as interaction techniques.

Tasks and Technology Table 1 shows the task list. We chose
15 daily mobile tasks relevant to Internet of Things (IoT) and smart
home contexts from a previous study on mobile interaction to expand
the usability of the gestures in daily life [52, 55].

Table 1: The task list shown to the participants.

Category Number Tasks
Call C1 Make a call

C2 Answer a call

C3 Ignore a call

C4 Hang up a call

TV T5 Turn on a TV

T6 Turn off a TV

Music M7 Play music

M8 Stop music

M9 Raise the volume

M10 Lower the volume

M11 Go to next track

M12 Back to previous track

Picture P13 Take a picture

Light L14 Turn on a light

L15 Turn off a light

Considering that our target operations are daily mobile tasks that
fit smart home contexts, we assume the following requirements
concerning the technology:

• It can detect various face-related gestures and can send the
signals to smart devices.

• Its form factor can be implemented as a wearable HMD.

• It does not interfere with daily life.

3.1 Exploration Study to Develop a Design Reference
We conducted a preliminary elicitation study in which some users
described the difficulty of designing face-related gestures. Therefore,
we made the study exploratory, similar to that of Yan et al. [65], to
help users develop gestures they deemed difficult to design. In this
study, we first interviewed twelve university students in Japan and
asked them to create the gestures for nine mobile tasks proposed
by Serrano et al. [55]. They were asked not to consider technical

feasibility and conflicts in the gesture set. As we wanted to learn
about their design process regarding the gestures, we asked why/how
they chose their proposed gestures. In addition to the student inter-
views, we recruited participants online using MTurk. The aim was to
include diverse ideas and perspectives of people with different back-
grounds from students enrolled in a local university. Twenty workers
described how they would use face-related gestures to control de-
vices in smart home contexts. We asked them to identify which six
gestures are a good fit (two each for eye-gestures, facial gestures,
and head gestures) and which three gestures (one for each gesture)
are not a good fit. The latter question helped to gain insight into how
to design the face-related gestures. The participants provided text
input describing the gestures.

Result We summarized the results to create a reference, which
is similar to the taxonomy developed by Lee et al. [32]. Our refer-
ence includes four concepts to consider: accuracy, ease of use, social
acceptance, and intuitiveness. For accuracy, two main strategies
were used to avoid false positives. One involved using infrequent
behaviors that do not often happen in daily life (e.g., a wink instead
of a blink gesture). The other strategy was to combine gestures
or repeat simple gestures. Examples are tilting the head left, then
looking down and left with the eyes, or blinking twice. For ease of
use, the participants proposed subtle and simple gestures. For social
acceptance, socially inappropriate behaviors, such as yawning, were
not recommended. For intuitiveness, associating a gesture with a
metaphor for the product (i.e., habits or senses) was used. For ex-
ample, to make a call, the associated head tilt motion was proposed.
Associations with feelings caused by gestures and ones caused by
tasks were also used. The reference describes all the aspects the
users proposed for designing gestures, although the factors within
the reference have trade-offs, such as accuracy and intuitiveness. The
reference includes a taxonomy as an anchor point for developing
gestures, such as the categories of area and flow (see Table 2).

Table 2: Taxonomy for designing face-related gestures.

Area head, eye, mouth, eyebrow,

lips, cheek, nose, tongue

Flow Combination one gesture, two gestures at the
same time, one gesture then an-

other gesture

Frequency an instant, held, twice, three
times, repeatedly

3.2 Elicitation Study
We conducted an elicitation study of face-related gestures for daily
mobile tasks. We showed the effect of a gesture to users and asked
them to propose a gesture that would cause such an effect [52, 63].

3.2.1 MTurk Approach
For gesture elicitation, we designed an online study using MTurk.
We adopted MTurk to include a broad user base, as most stud-
ies for gesture elicitation are biased in terms of specific cultural
backgrounds. The advantages of using an online tool are that it
is cost-effective and less time-consuming [1, 2]. We controlled the
workers’ qualifications for those with an approval rate of greater than
95% on human intelligence tasks (HITs) and the number of HITs
approved as greater than 50. The study took 20 to 30 minutes for
each participant, each of whom was rewarded with 3 US dollars for
successfully completing the study. We used two yes/no validation
quizzes to check for bots. However, as this process is not perfect, we
manually checked the answers. If the answers were not related to
emotion/ face-related movement, we removed them from our dataset.
37 participants completed the study correctly by text. The gestures

376

Authorized licensed use limited to: Keio University. Downloaded on March 18,2021 at 12:27:00 UTC from IEEE Xplore.  Restrictions apply. 



were not recorded via video as MTurk policy did not allow us to
collect personal identification information, which includes the face.
Table 3 provides a summary of the method.

Table 3: Summary of the approach.

MTurk
Participants 37

Proposals 486

Gestures 612

Briefing By text

Elicited 1 for each task

Group Personal

Recording Text input only

Media Google form

3.2.2 Procedure

The participants provided text responses on a Google form that
they were redirected to from MTurk. The format consisted of a
briefing section, followed by a gesture elicitation section, and finally,
a question asking participants to describe the pros/cons of the face-
related gestures.

The briefing section first gave an overview of a smart home’s con-
text, wearable devices, what a face-related gesture is, and the tasks.
Then, participants were shown a developed reference on how to
design the gestures. The final part included two validation quizzes to
confirm that they had read and understood the briefing. The gesture
elicitation section showed a video or image of the referent and asked
participants to try out the gestures they developed. For example, we
showed a video of a ceiling light turning off for L15. Then, the par-
ticipants entered face-related gestures that they felt were a good fit
for the task. This section also asked them to evaluate their proposals
in terms of whether the gesture is a good match for the task, how
easy the gesture is to perform, and how obvious it is. These ques-
tions were asked to prompt them to design the gestures considering
these criteria and try the gestures. The process was repeated for each
task. The participants completed the proposals from C1 (make a
call) to L15 (turn off a light) in numerical order. The final section
asked about the pros/cons of the face-related gestures developed by
the participants. This question was asked to gain insight into how
the user felt about the face-related gestures.

3.2.3 Analysis and Results

With regard to the 15 tasks, the MTurk participants (N = 37) made
486 valid proposals. The number of proposals differed depending
on the tasks since we eliminated invalid gestures that did not meet
our definition from 61 participants.

First, we factored the proposals into the gestures. We counted
repetitive gestures as one gesture. All told, the number of factored
gestures was 612. Then, we manually coded them into AU combina-
tions that refereed to the FACS [14]. Using the FACS, we coded the
proposals based on the text, and on the image results of searching
for the text on Google. We created categories if there were no ap-
propriate labels for the gestures in the FACS. We coded 589 out of
612 gestures using the index. The coding was performed to catego-
rize the gestures as either head (AU51, AU52, AU53, AU54, AU55,
AU56, M59, M60), eye (AU61, AU62, AU63), upper face (AU1,
AU2, AU4, AU5, AU43, AU45, AU46), or lower face (AU12, AU15,
AU24, AU27) gestures. We categorized similar movements (e.g.,
”opening eyes” and ”lifting eyebrows” movements can be associated
with the same emotion—surprise ) into one AU group. The results
of the coding index appear in Table 4. They only show the gestures
that appeared more than or equal to ten times in the coding.

Table 4: Action units index from the text proposals (N = number of
proposals).

AU Grouping Examples N
AU12 smile, raise lips, happy 83
AU43AU45 close (shut) eyes, sleeping, blink 76
AU1AU2AU5 lift (raise) eyebrows, raise one eyebrow,

open eyes, excited
62

AU15AU24 sad, lips down, unhappy face, bad face 36
AU46 wink , close one eye 33
AU27 open mouth 28
M59 head shake, head nod side to side, head

tilt to double side
28

M60 head nod, head up and down 28
AU4 frown, narrow (lower, furrow) eyebrows,

angry, shrink face
25

AU55AU56 head tilt (to one side, right, left) 22
AU54 head (tilt) down 20
AU51 head left 18
AU53 raise head, head tilt up, head up 18
AU52 head right 12
AU62 eyes right 12
AU61 eyes left 10
AU63 eyes up 10

Area for Interaction We categorized the proposed AUs into four
groups (i.e., head, lower face, upper face, and eyes). Figure 2 shows
the detailed area distribution for each task. Overall, the ratio of head-
related, lower-face, upper-face, and eye-related proposals was 0.283,
0.330, 0.309, and 0.077, respectively. The participants proposed face
gestures (upper and lower face) most frequently (0.638). The results
suggest that face gestures have potential as interaction methods.

Figure 2: The proposed interaction area.

Complexity Next, we analyzed the complexity of the proposed
gestures. We divided the gestures into two categories: single-site
motion gestures and other complex gestures, such as a combination
of gestures, sequential gestures, and repetitive gestures. Figure 3
shows the ratios of the results obtained in each experiment. The
proportion of single-site motion gestures was high (average: 0.645).

Figure 3: Complexity of the proposed gestures.

Association of Tasks with Non-Verbal Meanings We ex-
amined the relationship between tasks and gesture characteristics.
Figure 4 shows the result. We considered positive or high arousal
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Figure 4: The positive/negative gestures included in the proposals.

gestures to be the following four types of gestures: 1) communica-
tion gestures (AU46), 2) agreement gestures (M60), 3) high arousal
gestures (the movement included in the action units of surprise, such
as AU1AU2AU5, and AU27), and 4) positive gestures (AU12). Neg-
ative or low arousal gestures included disapproval gestures (M59),
and AUs containing in negative emotions, such as AU4 and AU15.

We conducted a Student’s t-test on the starting action groups (C1,
C2, T5, M7, M9, P13, L14) and ending action groups (C3, C4, T6,
M8, M10, L14). The results showed a significant difference in the
number of positive or high arousal gestures between the starting and
ending action groups (p < 0.01). Similarly, there was a significant
difference in the number of the negative or low arousal gestures
between the two action groups (p < 0.01). Thus, the tactics of asso-
ciation differed depending on the action groups. The starting action
groups tended to include the positive or high arousal gestures as they
had a ratio of 2.09 (the number of positive or high arousal gestures
divided by the number of the negative or low arousal gestures), while
the ending action groups had a ratio of 0.198.

3.2.4 Candidates for the Gesture Set
To examine the trends in terms of the gesture proposals for each
group, we picked out candidates for the gesture set. As one proposal
(e.g., ”wink + smile”) can be coded into two or more gestures (”wink”
and ”smile”) in our study, and a general agreement rate is difficult to
use. We also think that our dataset included more noisy answers than
general elicitation studies. Our validation process can not observe
each MTurk participant (they may have just tried to finish quickly).
Out of the ten or more gestures included in all the proposals (i.e.,
those shown in Table 4), scores (S) were assigned using the following
formula for those that occurred three or more times for any one task.
The scores were assigned after the normalization to decide on a
suitable gesture for each task.

Sik =
Nik

Ni
∗ Nik

Nk
(1)

where Ni is the total number of gestures proposed for task i, Nk
is the total number of gesture k proposed, and Nik is the number
of gesture k proposed for task i. After calculating Sik, which is the
score of gesture k for task i. For example, if we consider a smile
gesture for making a call (Nik), the number of proposed smiles is 10.
The number of proposed smiles for all referents (Nk) is 83, and the
number of proposed gestures for making a call (Ni) is 34. Therefore,
score Sik = 10/34*10/83 = 0.0354. Our agreement score considers
a bias of suggesting gestures that are easy to come up regardless
of the referent. Table 5 shows the gestures with the three highest
scores for each task. In this table, we used the first example gesture
of each AU in Table 4 (e.g., smile instead of AU12) for ease of
understanding. Table 5 also shows a raw percentage agreement (the
number of a gesture divided by the number of gestures proposed for
each referent.)

According to the table, participants tended to design gestures with
reference to the existing interfaces and the non-verbal information
that they associated with a task (e.g., opening the mouth to make
a call). In particular, they suggested gestures that required moving

Table 5: Candidates for the gesture set [gesture name (our score *
102, the raw agreement rate)].

Task Gesture Proposals
C1 Make a call smile (3.54, 0.29), lift eyebrows (1.71,

0.18), wink (1.43, 0.12)
C2 Answer a call smile (6.21, 0.67), open mouth (0.85,

0.08), lift eyebrows (0.68, 0.11)
C3 Ignore a call sad (3.59, 0.18), shake head (2.29,

0.13), frown (0.92, 0.08)
C4 Hang up a call close eyes (3.37, 0.26), frown(2.56,

0.13), nod head (1.47,0.10)
T5 Turn on a TV lift eyebrows (3.04, 0.21), smile

(2.27,0.21), raise head (2.07, 0.09)
T6 Turn off a TV close eyes (4.74, 0.3), shake head

(2.23, 0.13), sad (1.79, 0.13)
M7 Play music smile (3.64, 0.28), shake head (1.43,

0.1), close eyes(1.18, 0.15)
M8 Stop music sad (2.34, 0.14), frown (2.27, 0.11),

open mouth(1.3, 0.09)
M9 Raise the volume lift eyebrows (3.44, 0.24), smile (1.55,

0.18), open mouth(0.85, 0.08)
M10 Lower the volume frown (2.7, 0.14), head left (2.4, 0.11),

head down(2.16, 0.11)
M11 Go to next track head right (5.08, 0.12), eyes right

(5.08, 0.12), sad(1.11, 0.10)
M12 Back to previous
track

head left (6.98, 0.13), eyes left (6.41,
0.13), sad (1.17, 0.10)

P13 Take a picture wink (2.87, 0.16), smile (1.55, 0.18),
open mouth (1.5, 0.11)

L14 Turn on a light raise head (5.00, 0.15), smile (1.48,
0.18), head nod (1.43, 0.10)

L15 Turn off a light close eyes (3.37, 0.26), head down
(1.15, 0.08), wink (0.7, 0.08)

a part of the face in the same direction as the interface of a task
operation (e.g., turning right for the ”next song” or raising an eye-
brow to ”turn up the volume”). Additionally, there was a tendency
for gestures to be suggested as pairs in the same area categories for
paired tasks. For example, gestures proposed for turning on/off a
light included ”raising the head” and ”lowering the head.” Both of
them involved moving the head in opposite directions.

3.2.5 Discussion on Face-Related Gestures
In the final section of the elicitation study, We asked MTurk users
the following question: ”What do you think are the advantages/dis-
advantages of face-related gestures over other input modalities (e.g.,
voice input)?” We also asked the local university students (N = 11)
this question. We summarized the pros and cons of face-related
gestures from the participants’ comments and proposals. Many par-
ticipants commented on the ability to perform the gestures. Since
all of us have heads, disabled people who cannot speak can also
make face-related gestures. One participant stated that face-related
gestures are not limited to a specific language. Some argued that
the gestures could be silent, which means that they do not bother
people near the user and provide security, thus allowing them to
be used in a public space, such as a library. Many mentioned the
ease of performing the gestures. They said that they take less effort
and save time as they are fast and easy to perform. One participant
noted that this helps multitask because the actions can be performed
mechanically if the user gets used to the gestures. Regarding mouth
gestures, silent voice gestures indicating ”yes” and ”no” were in-
cluded in the elicitation study. This silent voice approach is a useful
face-related gesture as it can compensate for the shortcomings of
voice inputs. However, many participants expressed concern that
face-related gestures may trigger unwanted tasks since some of the
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gestures are often performed in daily life. One participant stated that
input gestures could bother or be misunderstood by people facing
the user. These concerns suggest that a trigger command is nec-
essary to avoid such problems. Another concern is memorability,
as users will need to remember which facial gestures are used for
which tasks. One person preferred voice commands because they
can be performed without any prior programming or adjustment.
One suggested method was to use voice inputs for the face-related
gestures until users get used to them so as they can take time to
adjust to the new technique.

3.2.6 Elicitation Study Takeaway
Based on this analysis, gesture designers should consider the fol-
lowing recommendations with regard to face-related gestures. From
the MTurk feedback, it seems that facial gestures are acceptable to
the users, as is the use of head and eye movements. Users tend to
propose rather simple gestures used in everyday life (e.g., a broad
smile), but this leaves room for misinterpretation and potential high
false-positive recognition. According to the observation in the ex-
ploration study, the proposed gestures are slightly more exaggerated
than naturally occurring facial expressions. Yet, it remains to be
seen if we can detect them in unconstrained everyday recordings.
Possible ways to prevent misclassification are the use of segmenta-
tion gestures or limiting the gestures to a specific location (people
working on a computer or reading usually do not show strong fa-
cial expressions, etc.). Although we showed two different strategy
references (”Use infrequent behaviors to avoid false positives” vs.
”Use simple and common gestures to increase the ease of use”), as
mentioned, most of the proposed gestures are simple. We also advise
avoiding socially unnatural behavior, as seen in the exploration study.
Second, we suggest using the metaphors associated with tasks. A
possible metaphor for a task is related to the situation in which it
arises, emotions, non-verbal gestures, or an existing interface for
executing the task. Finally, for paired tasks, such as turning a tele-
vision on/off or music volume up/down, paired gestures should be
used. Gestures can be paired using contrasting or same notions using
the same facial area category. We think that this helps make gestures
more intuitive and memorable.

3.3 Finalized Gesture Set
We created the finalized gesture set using the gesture candidates in
Table 5 and following the above takeaway. Table 6 shows the result.
We mainly selected from the first candidate in each case in Table 5.
Then, we added the second option for C1 and C2 to avoid gesture
conflicts in the same category, and for L15 to form a pair with L14.
For M11, we had two candidates with the highest score. We added
the paired gesture of M11 for M12 as a second option. We think
that second options can be combined with first candidates to trigger
tasks to avoid false-positives.

4 PROOF OF CONCEPT

Figure 5: The appearance (left) and the sensor layout (right) of the
device. The sensors circled in red have a longer focal length than the
ones in the blue rectangles.

Given that the gesture set included all facial, eye, and head ges-
tures, we searched for a method that could detect these gestures with
a wearable device. A head gesture can be detected by adding an
IMU, as it has already been evaluated in the previous studies [13,65].
Therefore, a method that could detect both face and eye movements

Table 6: The final result for each task

Task Final Results
C1 smile (lift eyebrows)
C2 smile (open mouth)
C3 sad
C4 close eyes
T5 lift eyebrows
T6 close eyes
M7 smile
M8 sad
M9 lift eyebrows
M10 frown
M11 head right (eyes right)
M12 head left (eyes left)
P13 wink
L14 raise head
L15 close eyes (head down)

using another sensing modality was desirable for the evaluation. To
this end, we focused on Masai et al.’s method [38, 40, 41], which
uses the skin deformation around the eyes through photo-reflective
sensors on smart eyewear. Such deformation occurs during both
facial movements and eye movements, and we think that this method
can detect both types of gestures. Since the sensors they used have
small form factors (e.g., NJL5901AR-1-TE1 is 1.3 mm x 1.6 mm
x 0.6mm), the device is wearable, allowing users to perform daily
mobile tasks without it restricting their pose or position. More-
over, the form factor of eyewear is socially acceptable. This is an
essential factor for practical use, and recent eyewear computing
research has considered such a form factor [40, 51, 57]. Because of
the small form factor, the system has the potential to be used in a
wide range of applications since the sensors can be integrated into
commercial HMDs or everyday eyeglasses because of their small
form factor [56,64]. Other advantages of photo-reflective sensors are
their low cost, contactless characteristic, and fast processing speed.

In addition to determining user-friendly gestures that are user-
defined, we improved the hardware and software in their facial ex-
pression recognition method [40, 41] and eye gestures classification
method [38]. For the hardware, we changed the sensor configuration
to incorporate facial movements and eye movements simultaneously.
We added an IMU to make the classification robust in terms of head
movement noise. For the software, we used a CNN to consider the
detection of time-series gestures, which is robustly distinguishable
from unintended sensor changes caused by natural movements and
gestures [53]. Our method has advantages concerning deliberate
gesture inputs to interact with smart devices in daily life.

4.1 Hardware
We used an eyewear prototype for our technical evaluation (see
Figure 5). The device follows the same sensing principle used in
a previous study [40]. The main parts of the device are photo-
reflective sensors, an IMU sensor, and micro-controllers. The IMU
sensor (Adafruit BNO055 Absolute Orientation Sensor) is located
on the side of the glasses. The IMU transmits a four-dimensional
quaternion. Two microcontrollers, one located on each side of
the glasses, are connected with I2C communication to handle the
analog inputs of 16 photo-reflective sensors. One is an ESP32-based
microcontroller (Adafruit HUZZAH32) that functions via Bluetooth,
and another is a Pro Micro, which acquires data from the IMU. The
IMU data includes the effects of head movements and the effects of
changes in the device caused by changing facial expressions. This
device is driven by a 3.3-volt battery.

A photo-reflective sensor consists of an infrared LED and a pho-
totransistor. The sensors measure proximity through reflection inten-
sity. Figure 5 shows the sensor layout. We placed 16 photo-reflective
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sensors (i.e., eight NJL5901AR-1-TE1 sensors [a short focal length]
and eight NJL5909RL-4 sensors, both produced by the New Japan
Radio Co. Ltd.) on the front frame of the eyewear prototype. The
sensors measure reflection intensity, which is changed by skin de-
formation around the eyes caused by eye movements and upper and
lower facial muscle movements, and mouth movements. We adopted
two kinds of sensors with different focal lengths for stability. We
put the sensors with the longer focal length on the far side of the
frame because the curvature of a face changes the distance range
measured by the sensors. Additionally, to improve light sensitivity,
we used higher register values (200k ohm) for the phototransistors
of the sensors that measure longer distances at the end of the front
frame than for the ones close to the center (47k ohm).

The device acquires a 20-dimensional data sample per reading.
The sampling frequency is 100 Hz. The data are sent via Bluetooth
Serial (at a baud rate of 115,200 bps) to a laptop, where the data are
stored and processed. We applied a CNN to the 120 sequential data
samples to classify temporal gestures.

4.2 Software
4.2.1 Data Processing
After smoothing out noise by applying a moving average of 10
frames, we set the window size to 120 and shifted the window by 10
frames. For each data, we applied ”change detection” with different
threshold values to extract each gesture’s range. We used three
thresholds to augment the data if the estimated range was different.
After obtaining the respective training data features, we resized
each sensor’s time series data with bilinear interpolation from the
OpenCV library. It unifies the sizes of all the gesture data to 52
(features) x 120 (frames) dimensions. In addition to gesture data, we
used the noise data for the non-gesture class. We applied the change
detection algorithm with different thresholds and feature extractions,
and then we resized to a window of 120 frames every ten frames.

4.2.2 Change Detection
Change detection finds the beginning and end of changes in certain
windows. First, the algorithm divided the data samples in the window
every five frames. Then, it calculated the Changed Value in the
frames for each sensor dimension as follows:

ChangedValue = sum(sqrt((d2)2)) (2)

where d2 is the difference between the sensor values in two frames.
If the average of the Changed Value in the five frames/total Changed
Value in the window was larger than the threshold, the algorithm
regarded it as a changed frame. It regarded the range between
the first and last of the changed frames as the range of change in
the window. If the algorithm could not find the changed frame, it
returned the whole data sample to the window. Other factors, such
as head motions and blinking, cause changes, but this algorithm
aims at avoiding false negatives rather than false positives. This is
because false positives can be filtered out for being non-gestures by
the gesture classifier later on.

4.2.3 Feature Extraction
After the range was specified, we extracted the features of 52 (16 +
16 + 16 + 4) dimensions for each time axis. The first 16 dimensions
are values obtained from optical sensors within the range, which
were standardized to a zero mean and unit standard deviation. The
next 16 dimensions were differential values obtained from the optical
sensors within the range, which were standardized to a zero mean
and unit standard deviation. The other 16 dimensions were optical
sensor values, which were subtracted by each initial value and then
divided by the standard deviation of the data samples from the whole
window. The last four dimensions’ values were standardized to a
zero mean and unit standard deviation within the range obtained
from the IMU. This feature extraction boosts the training of a CNN.

Figure 6: The CNN architecture for gesture recognition.

4.2.4 Network Architecture
We used a CNN for gesture detection and classification. A CNN is
used for activity recognition in temporal sensor data. The approach
outperforms handcrafted features and shallow feature learning al-
gorithms, such as support vector machines [66]. For multimodal
deep learning algorithms, the modality-specific architecture showed
higher accuracy [48]. Based on this, our CNN architecture is the
modality-specific as shown in Figure 6. For each sensor modality
and processing feature, the channels were divided and convoluted.
We used three convolutional layers for each channel with Rectified
Linear Unit (ReLU) activation. Convolution was applied to both the
temporal and sensor dimensions since close sensor data correspond
with each other. For strides, we used the temporal direction of each
sensor dimension. Each layer was normalized with L2 regularization.
Then, the algorithm concatenated the layers and constructed a fully
connected layer connected to another fully connected layer. Finally,
it was connected to the last layer associated with the gesture classes
(eight gesture classes and one non-gesture class). For the last layer,
we applied softmax activation. The optimizer of the learning rate
was Adam [28], and the CNN was trained with 50 epochs and a
batch size of 256. We implemented the algorithm using Python and
Keras. The weight W of the gesture class was calculated using the
following formula when the amount of non-gesture class was large.
In the formula, the noise is the amount of non-gesture data, and all
is the total volume of data. The weights of all the gesture classes
were the same as we assumed that there were no large differences in
the amount of data among the gesture classes. G corresponds to the
number of gesture classes, which is eight in the evaluation.

W = log(((noise/all)∗G)/(1− (noise/all))) (3)

For detection, we made three inputs from data samples in each
window using three different thresholds (0.01, 0.02, and 0.03) for
”change detection.” Then, we applied the CNN to these inputs. Each
output contains a nine-dimensional vector (eight gesture classes
and one non-gesture class) in the range of 0 to 1. Each class of
the outputs was smoothed using the three time series sequences of
moving averages. Finally, the algorithm multiplied the outputs for
each class in the same time frame. If one of the gesture class values
was greater than 0.5, then it outputs the class. Otherwise, it outputs
the non-gesture class. As long as the output class was the same in
the time series, the algorithm regarded them as one gesture. This
process can reduce false positives due to unexpected data behavior
while performing gestures.

5 TECHNICAL EVALUATION
To verify that the user-defined face-related gestures are technically
feasible in a minimally invasive way, i.e., using the technology that
can be potentially integrated into a wide range of wearable devices
(OST-HMDs, HMDs, eyewear, etc.), we evaluated accuracy and pre-
cision of intentional temporal face-related gestures using an optical
sensing system integrated into the eyewear device. This sensing
technique is more affordable than comparable methods and can be
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Figure 7: Eight face-related gestures for evaluation.

applied to other wearable devices as the hardware configuration,
including sensors and microcontrollers, is fairly simple. We have
summarized this section’s results below:

• The average F1 score when detecting and classifying the 8
kinds of gestures with 13 participants was 0.911.

• The average accuracy of the classification with user-
independent training was 61.4%.

• The one-hour recording of making two gestures every four
minutes showed F1 scores of 0.921 and 0.867 for wink and
smile gestures, respectively.

5.1 The gesture set used for the evaluation
We selected the gestures from Table 5 for the evaluation as follows:
AU12 (smile), AU27 (open mouth), LP (lip movements related to
negative emotions), AU1+2 (lift eyebrows), AU4 (frown), AU43
(close eyes firmly), AU46 (right eye wink), and AU61 (eyes left).
We excluded head gestures that have been evaluated using an IMU in
the previous research [13, 65]. This gesture set is novel compared to
existing validated gesture sets for a smart eyewear [38, 40] in terms
of considering both facial and eye gestures, and including mouth
only movement. We assumed that all the gestures start from and end
with a neutral facial expression. By creating this deliberate flow, we
aimed to distinguish gestures for manipulation from spontaneous
ones. We included only one of each of the paired gestures as the
classification of another paired gesture will be possible if one gesture
can be classified. For example, ”move eyes right (AU62)” can be
classified if ”move eyes left (AU61)” is classified correctly. For
AU43, we asked the participants to close their eyes firmly to avoid
natural blinks being classified as AU43. We did not consider the
quality of gesture execution as some participants may not be able
to make certain gestures, such as a wink. Instead, we evaluated
whether the detection of their intended gestures was feasible.

5.2 Participants and Data Acquisition Procedure
We recruited 13 participants (9 males and 4 females) in their twen-
ties via word-of-mouth sampling at a university in Japan. All the
participants are Asian, and they were each compensated with ap-
proximately ten US dollars. We ran all the recordings sequentially in
the laboratory after receiving approval from the bioethics committee
of Faculty of Science and Technology / Graduate School of Science
and Engineering, Keio University.

Procedure Each participant sat on a chair in front of a laptop,
which was placed on a desk. Participants wore the prototype with
an eyewear band strap for stability. The experimenter introduced the
prototype and confirmed it worked adequately for each participant.
If sensor values were saturated, the experimenter adjusted the size
of one or both of the nose pads. The experimenter then explained
that they would make 8 different face-related gestures 20 times each
in a limited time (160 gestures in total). The experimenter told
them that each gesture should start and end with a neutral facial
expression. Next, the experimenter gave instructions for using the
recording software. Each gesture recording consisted of two phases.
In the preparation phase (2,000 ms), the software indicated the next

gesture with a word and image. In the action phase (1,500 ms), the
software asked them to perform the gesture. The software recorded
sensor values, gesture labels, and timestamps during the action
phase. The experimenter asked the participants to make gestures
quickly, as the recording time was limited. The software recorded
the eight kinds of gestures in a periodic order to prevent participants
from making the wrong gestures. The software was implemented
using the Processing language. These recordings were used later
for training. Then, the experimenter recorded noise data for 30
seconds while each participant 1) was seated and in a relaxed state,
2) moved his or her face, head, and body, and 3) walked around
the room. These noise data were assigned to the non-gesture class
for training. Later, the experimenter asked the participants to make
all 8 types of gestures 4 times within 90 seconds. The order of
the gestures was randomized and given by written instructions. In
this session, participants made the gestures at their own pace. The
process was repeated three times while participants were sitting
on a chair. Overall, 96 gestures (eight types x four times x three
sessions) were made by each participant. We recorded sensor data
and videos of the participants with the laptop’s built-in camera and
placed timestamps to synchronize the images and sensor data. These
recordings were later used as test data. The test dataset is closer to a
realistic scenario than training data. It contains not only complete
gesture data but also gesture transition data and gesture data that are
missing the information at the start or the end.

5.3 Results
For gesture recordings in the first session, each gesture data had
approximately 150 frames. Two or three sets of training data were
generated from each set of gesture data. Overall, around 2,500 sets
of training data were collected from each participant, including the
augmented data, and about two-thirds were from the non-gesture
class. The ratios of the sample numbers are almost the same for the
eight gesture classes. The test data consist of three recordings of 90
seconds with a 100 Hz sampling rate. As the window is shifted for
every ten frames, the size of the test data for each participant leads to
approximately 2,640. We checked the outputs by superimposing the
classification result on the captured images in the recording of the
test data (the training dataset and the test dataset were recorded with
different procedures). The timing was matched using the timestamps.
Figure 8 shows the F1 score of classifying the gestures in the test data
while the users sat on a chair. After the CNN was trained with all the
participants’ training datasets, the whole architecture was retrained
with each participant’s training dataset and tested independently.
Since the number of non-gesture classes was larger than the others,
we do not show them in Figure 8. Each participant performed 8
kinds of gestures 12 times. The average F1 score was 0.911, ranging
from 0.827 to 0.994. Table 7 summarizes the results by gesture.
AU46 (right wink) had the best score, and AU1+2 (raising eyebrow
action) had a high F1 score of 0.966.

We observed specific patterns of false positives for the gestures.
For example, the end of P9’s eye-closing gesture was misrecognized
as a gesture that narrows the eyebrows. The end of P10’s smile
gesture was misrecognized as a gesture of opening the mouth. The
end of P12’s opening the mouth gesture was misrecognized as a lip
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Figure 8: F1 scores of detecting and classifying eight kinds of temporal face-related gestures for each participant.

Table 7: Average scores of all participants (R: recall, P: precision, F1: F1 score).

AU12 AU27 LP AU1+2 AU4 AU43 AU46R AU61 Average

R 0.955 0.904 0.910 0.987 0.968 0.974 0.994 0.917 0.951
P 0.903 0.762 0.798 0.945 0.825 0.938 0.994 0.867 0.875

F1 0.928 0.827 0.850 0.966 0.891 0.956 0.994 0.891 0.911

gesture. The data near the end of the gestures tended to be classified
incorrectly as the ends of some gestures were lacking in the training
dataset due to the short recording time for each gesture’s data.

We also tested performance with user-independent training. We
trained the CNN (10 epochs) using 15,000 randomly selected train-
ing data (gesture and non-gesture classes) from 12 participants. The
CNN predicted the gesture class data (8 kinds x 20 times) of the
users whose data was not used for the training. The gesture class
data were processed using ”change detection” with a threshold of
0.02, using 120 frames from the beginning of each trial’s data. We
used the highest value of the CNN output as the prediction result.
We repeated this 10 times for all 13 participants. Figure 9 shows the
mean accuracies and standard deviations. The overall mean accuracy
was 61.4% (SD = 11.6%). The detection was a challenge as 44.5%
of the data from P6 (40.0% accuracy) and 49.0% from P13 (40.5%
accuracy) were regarded as being part of the non-gesture class.

Figure 9: Performance with user-independent training.

5.4 One-Hour False Positive Test
We further explored the false positives of two gestures (AU46 and
AU12). For this exploration, the experimenter performed the record-
ing. After recording the gestures 20 times and 90 seconds of the
non-gestures, the CNN was trained with 3 classes. Then, the ex-
perimenter performed a one-hour recording with the device. The
alarm was set every four minutes, and each time the alarm went
off, the experimenter winked twice and smiled twice. Including
the gestures at the beginning of the recording and one additional
wink in the middle, the experimenter performed a total of 31 winks
and 30 smiles. During the recording, the experimenter either sat
on a chair, angled his head, stood and stretched, walked around,
watched a movie that induced smiles, or surfed the internet using a
computer. Despite the experimenter correcting the glasses’ position
occasionally and performing daily activities, 29 out of the 31 winks
and 26 out of the 30 smiles were detected correctly. There was one
false positive concerning a wink during the recording. It was caused

by scratching the right side of the nose, which was not included in
the training data. The F1 scores were 0.921 and 0.867 for AU46
and AU12, respectively. This supports the possibility of using such
gestures in real-life settings.

6 DISCUSSION

The technical evaluation showed that the average recall of face-
related gestures was 0.951, but the average precision was 0.875.
The main issue was false positives, which caused unintentional
commands to be detected.

First, the false detection of gestures can be influenced by the data
included in the training dataset. If we incorporate data that are likely
to be mistaken as target gestures, the network can learn the difference.
For example, the blink action included in the test dataset was not
mistakenly recognized as closing the eyes firmly. These gestures
are visually similar, but the network learned the difference based
on the speed and strength of spontaneous blinks and intentional
eye closing. Therefore, if the spontaneous movement is included
in the training dataset as noise data, the algorithm can differentiate
it from intentional gestures. This data collection can reduce false
positives, but it might be costly. Also, some users’ gestures with
regard to closing their eyes and lowering their eyebrows had a visual
similarity. While these gestures were classified correctly most of
the time, they did cause some false positives. The algorithm can
consider such patterns and improve the F1 scores by improving the
network architecture and data acquisition protocol.

Second, the independence of gestures needs to be considered to
avoid false positives. For example, when users were instructed to
open their mouths, they sometimes raised their eyebrows at the same
time. However, they did not open their mouths when instructed to
raise their eyebrows. Another user lowered his or her eyebrows in
conjunction with closing his or her mouth. Both movements are as-
sociated with emotions (surprise and anger), and the accompanying
actions are also parts of the associated emotions. This synchronicity
may happen, so it is helpful to use synchronized movements for the
same command. This prevents unintentional commands but may
make user-defined gesture sets non-intuitive.

Third, we could use an infrequent gesture, such as a wink, as a
trigger command, and this was shown to give a high F1 score in
the one-hour study. A trigger command could make detection more
robust but could also make the gesture flow more complex.

Finally, in addition to a trigger command, it is crucial to under-
stand which object the user intends to operate and which object the
user is currently operating to avoid mis-interactions. OST-HMDs
allow users to confirm their intentions on displays. Also, research
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efforts have been made to sense users’ context for such AR sys-
tems [19]. We expect that combining these technologies will help
avoid false positives and improve the user experience.

7 LIMITATIONS AND SOCIAL IMPLICATIONS

As outlined above, facial expressions have a lot of positive attributes
(hands-free, subtle, etc.). They can be used by people who can-
not move their bodies and provide them with the tools to interact
with smart devices. We considered the device design’s social ac-
ceptability, but our study did not address the sociological aspect of
performing gestures. Social acceptability is essential to improving
the user experience. As there are various aspects of social accept-
ability, we need to develop appropriate measures for each aspect in
naturalistic settings [29]. This is outside of the scope of this paper;
however, we need to validate gestures in terms of social acceptability.
According to Rico and Brewster [50], a user’s willingness to perform
gestures depends on the environment and the audience. We think
social acceptability will be different for each face-related gesture.
After defining the gesture set, we need to explore when and with
whom users would be motivated to use a specific gesture. Also,
encouraging the use of certain facial gestures with our technology
may alter the role and usage of facial expressions in human-to-
human communication. We are already observing similar effects
and considerations to change the technology regarding speech assis-
tants [35]. The effects of facial gestures on human communication
should therefore be carefully considered. Another concern regarding
sociological aspects is how other people interpret intentional face-
related gestures. How will the design of the wearable device affect
usability and social acceptance? Obstructing or covering part of the
face might make the user accept facial gestures more while harming
non-verbal communication. The effects need to be studied in situ
and will be dependent on application cases, the environment, and
the company the person is in. Even though these considerations are
outside of this paper’s scope, we provide an exploration of such use
cases and a working prototype implementation.

We developed a gesture set of face-related gestures for daily
mobile tasks. This set may require adjustment depending on the
culture and each user’s preferences because such factors influence
the muscular control of facial muscles. As a follow-up to the techni-
cal evaluation, the experimenter asked each participant about his or
her preferred gestures. They tended to prefer the gestures AU12 or
AU27 and stated that AU4 and LP are challenging to perform. We
tested the gestures with Asian participants, so determining whether
this tendency is present in other cultures requires further research.
Also, the preference can be influenced by how easily the technology
recognizes the gestures.

For the elicitation study, we could not record the MTurk partici-
pants visually. Instead of visually validating the data, we collected a
lot of text data to confirm the trend. Therefore, there may have been
a bias in linking texts with AUs. Also, the gesture proposals were
coded by one of the authors only. We made the grouping clear by
creating an index (Table 4), but the grouping of AUs was subjective.

Moreover, due to the high noise ratio, our use of MTurk had room
for improvement. We had to collect data from approximately three
times the target number of participants. The noise answers included
nonsensical responses, such as just ”good” or ”yes,” even though
the participants received explicit instructions to propose gestures.
Some responses included the description of the image/video of the
referent. We assume that many assignments on MTurk involve the
labeling of pictures for machine learning and that they responded to
the images and videos without reading the briefing. Therefore, the
briefing could be more direct and succinct. Our validation quizzes
could be improved since they were just two yes/no questions, which
could have been answered without reading the briefing. We could
reduce noise answers if we divided the tasks into explicitly simple
ones, similar to those used in machine translation [6].

Head motion, positional drift, walking, and re-worn conditions
can influence data collected from optical sensors on an eyewear
device [40]. Our algorithm considers the relative change in a time
series to lessen the influence of initial sensor states in a sampling
window. We undertook a case study of a one-hour recording where
the experimenter made indoor activities. The study showed a promis-
ing result in terms of adjusting for a shift. Still, we need to evaluate
such influences with our algorithm. Additionally, the sensors em-
ployed for the system are vulnerable to high-intensity light, limiting
the system’s use to indoor settings. To use it outdoors, we need to
develop covers to protect the sensors from ambient light or filters,
utilizing the synchronous detection technique.

With the current algorithm, the sensor data are classified into one
of nine classes. The system does not consider multilabel gestures
simultaneously (i.e., two or more). If a user makes two gestures
simultaneously, the resulting sensor data could be categorized as
either of them or in the non-gesture class. This limits diversity
in terms of the gestures. Also, adding new gesture classes will
require re-training the architecture. We are considering making
detectors for each class (eye movement, mouth movement, etc.) by
incorporating multiple CNN architectures. Another way to address
the customizability issue is to use a similarity-based approach, such
as one-shot learning. We explore the algorithms in future work.

The current dataset only contains 13 users, which impacts its
generalizability. Our main result of the technical evaluation used the
test data and training data from the same users. Our results of user-
independent training suggest the potential for generalizability, but
the mean accuracy was only 61.4%. Our system requires individual
user training. Given that we are extending the use of glasses, an
already individualized accessory, we think this limitation is not
so severe. Our system requires a calibration phase, like for other
wearable devices such as eye-tracker. If we assume people use
personal VR/AR glasses (and do not share them), a personalized
classifier might be acceptable as a one-time adjustment when the
user sets up the system. The prototype system could be used as it is
for this setup. We are considering transfer learning (e.g., a domain
adaptation framework [26]) to reduce the cost of user-dependent
training processes and make the system generalizable. We want to
investigate how to shorten the calibration by analyzing the influence
of the training dataset’s size on accuracy. In the future, we can
imagine similar auto-calibration approaches, such as those in place
for eye-tracking systems.

8 CONCLUSION

In this paper, we developed and tested face-related gestures as in-
teraction methods. We conducted an elicitation study using MTurk.
We coded the text proposals into AUs manually. The gestures were
considered to be hands-free, subtle, and able to be used in various
settings by the participants. Based on the results, we summarized
the findings and developed a user-defined gesture set. Then, we
evaluated the feasibility of face-related gestures in the developed
set using an eyewear device. We used a CNN for detection and
classification. The average F1 score when detecting and classifying
the eight kinds of gestures with 13 participants was 0.911. The mean
accuracy of the classification with user-independent training was
61.4%. The one-hour recording of making two gestures every four
minutes showed F1 scores of 0.921 and 0.867 for wink and smile
gestures. This finding suggests the possibility of the real-life use of
the gestures. In future work, we plan to integrate the technique with
an HMD prototype to explore the user experience of the gestures,
such as their social acceptability.
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