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Figure 1: First bite/chew are like the red, and yellow rectangles indicate; they are significantly different from the following
bites/chews, which are relatively the same among different food types.

ABSTRACT
Eating or overtaking allergic foods may cause fatal symptoms or
even death for people with food allergies. Most current food intake
tracking methods are camera-based, on-body sensor-based, micro-
phone based, and self-reported. However, challenges that remain
are allergic food detection, social acceptance, lightweight, easy to
use, and inexpensive.

Our approach leverages the first bite/chew and the correspond-
ing hand movement as an indicator to distinguish typical types
of the allergic food. Our initial feasibility study shows that our
approach can distinguish six types of food at an accuracy of 89.7%
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over all four participants’ mixed data. Particularly, our method suc-
cessfully detected and distinguished typical allergic foods such as
burgers (wheat), instant noodles (wheat), peanuts, egg fried rice,
and edamame, which can be expected to contribute to not only
personal use but also medical usage.
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1 INTRODUCTION
Food intake monitoring is intensively explored, in which manual
food intake estimation methods contribute to poor accuracy [6, 15].
Manual methods also require significant time and effort and are
prone to be forgotten or abandoned [11]. Smartphone methods are
also inconvenient as the user must stop eating to interact with
the phone. Such wearable agents [17] can significantly reduce the
amount of time between a user’s first intention to do a task and
their first action to do it [16], which greatly increases the likelihood
that the interface will be used [18]. Another constraint for many
users is that they do not want to wear devices that call unnecessary
attention to themselves or might cause onlookers to believe the
user has a disability [12].

This work’s key contribution is the concept of First Bite/Chew-
based allergic food detection system. Our approach has several
benefits: (1) computational simplicity: our system only contains
two IMUs (one is built-in the following MCU) and an inexpensive
machine-learning capable MCU1 as the main parts, (2) easy-to-use:
to monitoring the different types of food intake, our approach does
not require extra manual practice and heavy load of learning, (3)
replicable: our approach can be easily replicated concerning cost
and design, (4) socially acceptable appearance: as our method does
not require camera nor bulky computational heavy design, but
maintained an ordinary glasses-like appearance.

2 RELATEDWORKS
Current food intake monitoring methods can be roughly cate-
gorized as IMU-based, IMU combined with other sensors, image
process-based, sound-based, and wearable on-body sensor based.
IMU sensor-based. Kim et al. [8] provided a smartwatch-based
method to address different eating patterns and food types and only
handled rice and noodle in their tests. Sound based. Sound-based
food intake detection has two main methods. The most studied one
is using microphones from hearing aids, earphones, or headsets
to capture users’ chewing noise and use it as an indicator of food
intake action[11]. Image-based. Regarding image-analysis-based
methods, processes like image segmentation, food recognition, and
portion size estimation are required to complete food intake estima-
tion [6]. Glasses-based chewing detection.Mertes et al. [9, 10]
developed a glasses-based method that detects the chewing motion
of elderly people. Chung et al. [4] designed a pair of smart glasses
that can classify food intake motions from physical activities.

However, to our knowledge, none of those existing smart glasses-
based studies could distinguish different types of food, especially
those allergic to food that could be fatal threats.

3 OUR APPROACH: FIRST BITE/CHEW BASED
FOODS INTAKE MONITORING

Our approach leverages the first bite/chew and the corresponding
hand movement as an indicator to distinguish the typical allergic
types of food. As Figure 2 shows, the concept of first bite/chew
contains two parts of signals. The first part (red rectangle) is the
data generated by biting/chewing as well as the head and muscles’
activities responding to the food during the first biting or chewing.

1Micro Controller Unit

The other part (orange rectangle) is the movement data of the
hand that grabs and moves the food during the first biting/chewing
period.

Hardware Design. To design the device that can obtain the first
biting and/or chewing vibration via skull and muscles, we attached
an IMU2 on the inner side (near the head) of the glasses’ right
leg – close to the area of superior auricular muscle and temporalis
muscle referring [5]. See Figure 3. To also obtain the corresponding
movements of the hand during the biting/chewing, we leveraged
an IMU3-embedded MCU4 and designed a wristband connected to
the IMU on the glasses’ leg with four wires via IIC-Bus. The device
connects to a MacBook pro laptop (i7 16gb) with a type-c cable.

4 INITIAL FEASIBILITY STUDY
To evaluate the concept of first bite/chew, we conducted an initial
feasibility study having four participants (twomale and two female),
aged from 23 to 32, MEAN = 26.5, SD = 3.4. They were compensated
by gift cards for their time. Their eating activities datawere recorded
during their self-reported general meal time. In total, we recorded
five meals for each participant in three days. Participants were
required to confirm and sign a consent form and allergic food
checking form, and they were also asked food and drink prohibitions
to make sure no one takes inappropriate foods.

Foods Selection. To examine the feasibility of our approach while
distinguishing allergic food from daily non-allergic food, we se-
lected five types of the common allergic food. They are peanuts,
edamame, burger, instant noodle, and egg (fried rice), among which
burgers and noodles both stand for the allergen of gluten. We also
selected one type of commonly non-allergic food, which is apple.
The food selection was based on Hefle et al. [7] and other related
works on food allergy [1–3, 13, 14, 14].

4.1 Result & ML Model Structure
For the food category recognition, a single-layer Neural Network
with 20 fully connected neurons was adopted. We trained and tested
the classifier over four participants’ mixed data by using 80% as
training data and the remaining 20% as testing data. As the figure 5
shows, the classifier achieves an overall accuracy of 89.7%. In detail,
82.4% accuracy for distinguishing Burgers, 84.8% for Edamame,
96.6% for Egg fried rice, 87.7% for Noodles, 92.9% for Peanuts, and
94.7% for Unknown food (apple).

5 DISCUSSION & LIMITATION
Currently, the system is at risk of distinguishing allergic food mixed
in other materials, for the food texture can be somewhat different
from the original. Distinguishing foods with similar textures and
eating manners is also challenging. To minimize the contact be-
tween allergic food and actual patients, as well as in terms of real-
life usage, advanced machine learning designs such as Few-shot
learning could contribute to building ready-to-use by using the data
generated from people who experience no or few food allergies.

2MPU6050 based IMU modular module.
3LSM6DS3
4Seeeduino Xiao BLE sense. https://www.seeedstudio.com/Seeed-XIAO-BLE-Sense-
nRF52840-p-5253.html
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Figure 2: Examples of defining first bite/chew of different types of food.

Figure 3: Hardware design and the sensors placement.

Figure 4: Six types of the selected food.

Figure 5: Confusion matrix, F1 score and on-device performance.

6 CONCLUSION
In this work, we proposed a computationally simple and easy-
repeatable approach for automatic food intake monitoring by lever-
aging the First Bite/Chew as the indicator. The initial feasibility
evaluation reveals that our approach could distinguish five typical
types of allergic food (burger, noodle, peanut, egg fried rice, and

edamame) during common eating styles with an average accuracy
of 89.7%.
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