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Abstract. The paper describes a method that allows us to derive the lo-
cation of an acceleration sensor placed on the user’s body solely based on
the sensor’s signal. The approach described here constitutes a first step
in our work towards the use of sensors integrated in standard appliances
and accessories carried by the user for complex context recognition. It is
also motivated by the fact that device location is an important context
(e.g. glasses being worn vs. glasses in a jacket pocket). Our method uses
a (sensor) location and orientation invariant algorithm to identify time
periods where the user is walking and then leverages the specific charac-
teristics of walking motion to determine the location of the body-worn
sensor.
In the paper we outline the relevance of sensor location recognition for
appliance based context awareness and then describe the details of the
method. Finally, we present the results of an experimental study with
six subjects and 90 walking sections spread over several hours indicating
that reliable recognition is feasible. The results are in the low nineties for
frame by frame recognition and reach 100% for the more relevant event
based case.

1 Introduction

A promising approach to context and activity recognition is the use of motion
sensors (predominantly accelerometers) attached to different parts of the user’s
body. Various types of activities ranging from simple modes of locomotion anal-
ysis [14] to complex everyday [2] and assembly tasks [8] have been successfully
recognized using such sensors. One thing that most of the work in this area has
in common is that it relies on sensors being placed at specific locations on the
body. Typically this includes the wrists, the arms, legs, hips, the chest and even
the head. Once a subset of locations has been chosen, the system is trained on
this specific subset and will not function properly if the sensors are placed at
a different locations. This implies that the user either has to explicitly ’put on’
the sensors each time he/she dresses up or the sensors have to be permanently
integrated into the individual pieces of clothing.

For wide spread and more near term applications of context recognition it
would be more convenient to place sensors in appliances and accessories that



most of us carry with us on a daily basis anyway. Such appliances include mobile
phones, PDAs, key-chains, watches, hearing aids, headphones, badges and other
smart cards and soon maybe even displays in glasses. Most of these devices
are equipped with electronics and some already have sensors, including motion
sensors (e.g Casio camera watch).

1.1 Context Recognition with Standard Appliance

While convenient for the user, the use of standard appliances and accessories for
context recognition poses considerable difficulties. The main problem is that one
can never be sure which devices the user carries with him and where on the body
they are located. A mobile phone might be in a trousers pocket, in a holster on
the hips, in a jacket or shirt pocket or in a backpack. Similar is true for a PDA, a
wallet or a key-chain. Even such location specific devices as a watch, headphones
or glasses might sometimes be carried in a pocket or a backpack.

As a consequence any system using standard appliances for context recogni-
tion must address the following issues:

1. Enough different body locations must be covered by sensor enabled appli-
ances to provide sufficient information for the recognition task at hand.

2. The system is either able to deduce where on the body each device is located
at any given moment or the recognition algorithm is location invariant.

3. The system must either be able to deduce the orientation of each device or
the recognition algorithm is orientation invariant.

4. If the recognition algorithm is not location invariant, then it must be able
to deal with different combinations of locations.

The work described in this paper constitutes the first step in our effort to facil-
itate the use of such appliances for complex context recognition. It focuses on
the second point: the device location. We show that the most common human
activity, namely walking, can be recognized in a location independent way. We
then demonstrate how the information that the user is walking can be leveraged
to determine device location.

The motivation for starting with device location is twofold. First we consider
it to be the most critical issue. Experience shows that people usually have sev-
eral accessories with them and mostly carry them at different locations. As an
example in a typical scenario the user might carry a key-chain in his trousers
pocket giving us the leg information, a watch on the wrist, a mobile phone in a
holster on the hip and a smart card in a wallet in a jacket pocket. Thus while
a systematic study will eventually be needed to determine the most common
locations for different applications, at this stage we assume that there are rele-
vant situations where point one is satisfied. Concerning device orientation, it has
been shown by [10] and [5] that it can be derived from three axis acceleration
sensors by looking at either time periods where the norm of the acceleration
signal is 1 (no motion just gravity) or in an approximation by looking at the
low pass filtered signal. Finally while there is considerable research potential in



optimizing an adaptive classifier, simple solutions also exist proving that it is
feasible for a system to deal with variable locations. In the worst case, a separate
classifier could be trained for every relevant combination of locations. Since for
the classifier it only matters that a sensor is at a certain location, not which
device it is embedded in, the number of combinations is reasonable. In addition,
only a limited number of all possible combinations will be relevant for a given
recognition task.

The second motivation for looking at device location is the fact that location
information itself is an interesting context. As an example, knowing if the glasses
are worn or if they are in a pocket can be an important clue to the user’s activity.

1.2 Related Work and Paper Contributions

The potential of body-worn sensors for context and activity recognition has been
demonstrated in many scientific papers [2, 3, 5, 6, 9, 11, 14–16].

Irrespective of the signal processing schemes and recognition algorithms used,
the variety of approaches presented differ in a number of ways. While some
approaches rely on different types of sensors (e.g. [5,11,14,15]), others solely use
a single type of sensor such as accelerometers ( [2,3,6,9,16]) for the recognition
task. Furthermore, the approaches may differ with respect to the type of context
targeted for classification ranging e.g. from the classification of walking behavior
(e.g. [14]) to the recognition of complex everyday activities [2]. There also exist
approaches targeting the same recognition task using the same sensors, but differ
with respect to the placement of the sensors. One common example for this is
the recognition of walking behavior (level walking, descending and ascending
stairs) with accelerometers (e.g. [12,16]). Despite the many differences, one thing
that most of the approaches have in common is the fact that their recognition
engines are unaware of the sensor locations and simply rely on individual sensors
being placed at specific locations on the body. Consider the case, where e.g. two
accelerometers A1 and A2 are used for a certain recognition task. The recognition
system works properly when sensor A1 is placed on the wrist, and sensor A2

mounted on the thigh which is the configuration which the system has been
trained for. If the two sensors would be exchanged after training, the system’s
recognition performance would without debt decrease, if it was not aware of this
change. To allow recognition systems to adapt to such changes, it must be aware
of the locations of the individual sensors on the body.

To our knowledge the method described in this paper is the first published
attempt to facilitate this functionality. This paper describes the details of this
novel method and presents an extensive experimental evaluation showing that
it produces highly reliable results. The experimental evaluation elaborates not
just the final results but also gives an insight into the effect of the different,
individual optimizations steps contained in our method.

The work that comes closest to ours has been presented by Lester et. al [7].
They introduced a method to determine if two devices are carried by the same
person, by analyzing walking data recorded by low-cost MEMS accelerometers
using the coherence function, a measure of linear correlation in the frequency



domain. In addition Gellersen et. al have shown how a group of devices can
be ’coupled’ by being shaken together. Furthermore there were a number of
attempts detect whether an appliance such as a mobile phone is on a pocket in
the hand or on the table [4].

2 Approach

2.1 General Considerations

Our approach is based on the obvious observation that different parts of the body
tend to move in different ways. As an example, hand motions contain much more
higher frequency components and larger amplitudes than hip or head motions.
In addition, physiological constraints mean that certain types of motions are not
permissible at all for some parts of the body (you can not turn your leg around
the vertical axis in the knee or tilt your head more than 90 degrees). Also, some
parts tend to be motionless for longer periods of time than the others. Thus, in
theory, a statistical analysis of the motion patterns over a sufficient period of
time should be able to provide information about the location of a sensor on the
body. However, when implementing this idea in practice one has to deal with
a number of issues. For one, the value of such a statistical analysis depends on
the user activity during the analysis window. Little information will for example
be gained if the user is sleeping during the whole time. In addition, the signal
of a motion sensor placed on a given body part contains a superposition of the
motion of this body part with the motion of the body as a whole. Thus while it
is not possible to tilt the head more than 90 degrees, such a tilt will be registered
when the user lies down. Finally, many of the motion characteristics that can
be used to distinguish between body parts involve absolute orientation which is
hard to detect, in particular if the orientation of the sensor is not known.

Our method deals with the above issues in two ways:

1. The analysis is constrained to the time during which the user is walking. This
is motivated by two considerations. First, walking is a common activity that
occurs fairly often in most settings. Thus, being able to detect the position of
devices during walking phases should provide us with a sufficiently accurate
overall picture of where the devices are located. In addition, once the location
has been determined during a walking phase, this knowledge can be used to
detect possible changes in placement.
The second reason for focusing on walking is the fact that walking has such a
distinct motion signature that it can be recognized without any assumptions
about sensor location.

2. We base our analysis on the norm of the acceleration vector which is inde-
pendent of the senor orientation.

2.2 Recognition Method

With the considerations described above our method can be summarized as
follows.



Features Computation Basic physical considerations confirmed by initial
tests have lead us to use following features computed in a sliding window that
is 1 sec long (overlapping 0.5 sec):
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i , where N is the number of samples a sliding window con-

tains, and xi the i’th sample of the window.
75%Percentile: Given a signal s(t) the 75%percentile, also known as the third

quartile, is the value that is greater than 75% percent of the values of s(t) .
InterQuartileRange The interquartile range is defined as the difference be-

tween the 75th percentile and the 25th percentile.
Frequency Range Power: Computes the power of the discrete FFT compo-

nents for a given frequency band.
Frequency Entropy The frequency entropy is calculated according to the fol-

lowing formula: Hfreq = −

∑

p(Xi) ∗ log2(p(Xi)), where Xi are the fre-
quency components of the windowed time-domain signal for a given fre-
quency band and p(Xi) the probability of X . Thus, the frequency entropy
is the normalized information entropy of the discrete FFT component mag-
nitudes of the windowed time-domain- signal and is a measure of the distri-
bution of the frequency components in the frequency band. This feature has
been used by [1].

SumsPowerWaveDetCoeff: describes the power of the detail signals at given
levels that are derived from the discrete wavelet transformation of the win-
dowed time-domain signal. This feature has successfully been used by [13]
to classify walking patterns with acceleration sensors.

Training Using a selection of relevant device positions walking recognition is
trained. The recognition is trained in a location independent manner by putting
the data from all locations into a single training set. As will be elaborated in the
experiments section 3, best results were achieved with a C 4.5 classifier. However
Naive Bayes, Naive Bayes Simple and Nearest Neighbor have also produced
acceptable recognition rates. In the next phase, data collected during walking is
used to train the location recognition.

Recognition The recognition is performed separately by each sensor using
the system trained according to the method described above. It consists of the
following steps:

1. Frame by Frame Walking Recognition In this phase the features are computed
in a sliding window of length 1s as described above and each window is
classified as walking or non walking. The window length has been selected
such that in a typical case it contains at least one step.

2. Walking Recognition Smoothing Using another jumping window of length 10
sec jumping by 5 sec the results of the frame by frame walking classification
are then smoothed. The smoothing retains only those windows, where more
then 70% of the frames were classified as walking. This ensures that the
subsequent location classification is based only on ’clean’ walking segments.



Fig. 1. Sensor placement

3. Walking Segment Localization The smoothed frame by frame recognition
results are then used to localize walking segments that are long enough to
allow reliable recognition. We define appropriate length to be at least a few
tens of seconds and not longer than a 2 or 3 min. If a walking segment is
longer than this boundary, it is automatically divided into several segments.
The rationale behind this approach is that most devices are likely to remain
in the same place for a few minutes. Changes on a smaller timescale must
be considered as isolated events (e.g taking out a phone and rejecting an
incoming call) and have to be detected separately by each device.

4. Frame By Frame Location Recognition A sliding window of the length of
1 sec. is then applied in each segment that has been identified as a rele-
vant walking event. In each window the features for location recognition are
computed and classification is performed.

5. Event Based Location Recognition For each segment a majority decision is
performed on the frame by frame location classification.

3 Experimental Results

3.1 Experimental Setup

To evaluate the performance of our method an experiment was conducted with
6 subjects. For each subject, 3 experimental runs were recorded. Each run was
between 12 and 15 min and consisted of the following set of activities:

1. Working on a desk (writing emails, surfing, browse through a book).
2. Walking along a corridor.
3. Making coffee, cleaning coffee kitchen, opening/closing drawers.
4. Walking along a corridor.
5. Giving a ’presentation’.
6. Walking.
7. Walking up and down a staircase.
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Fig. 2. Overview over the different classification algorithms and the varying ap-
proaches. The abbreviations have the following meaning: rl fbf=frame by frame using
reference labeling (3.3), fbf = for frame by frame location recognition using frame
by frame walking (3.3 and 2.2), fbf ws = frame by frame location recognition using
smoothing over walking (2.2), bs = smoothing approach for both location and walking
(2.2).

8. (optional) working at desk.

Thus, there are 18 data sets containing a total of 90 walking segments (including
the stairs).

All results presented below are based on a 10 fold-cross validation for evalu-
ation on a subject by subject basis. For classification the WEKA 1 java package
was used.

Hardware The sensor system used for the experiment is the XBus Master
System (XM-B) manufactured by XSens 2. For communication with the XBus a
Bluetooth module is used, thus data is transmitted wirelessly. Therefore, the test
subjects just have to carry the XBus plus sensors and are not burdened with any
additional load. The conductor of the experiment carries a Xybernaut to collect
the data and to supervise the experiment. Four of the XSens Motion Tracker
sensors connected to the XBus are affixed on the test subject on four different
body parts. The locations that have been chosen represent typical locations
of appliances and accessories. Furthermore, they are relevant for the context
recognition. Below is a short description of the locations used:

1 http://www.cs.waikato.ac.nz/ml/weka/
2 http://www.xsens.com



– Sensor 1: Wrist. This simulates a watch or a bracelet while worn.
– Sensor 2: Right side of the head above the eyes. This emulates glasses that

are being worn.
– Sensor 3: Left trouser’s pocket. This is a typical location for a variety of

appliances such as key chains, mobile phones or even a watch that was taken
off the wrist.

– Sensor 4: Left breast pocket. Again a typical location that would also include
smart cards, glasses, (e.g. in a wallet).

3.2 Location Recognition on Segmented Data

As already mentioned earlier, the location recognition is only done during walk-
ing. Thus we begin our analysis by looking at the performance of the location
recognition on hand picked walking segments. The results of the frame by frame
recognition an all 90 segments contained in the experimental data is shown in
figure 2. Using a majority decision on each segment leads to a 100% correct
recognition (124 out of 124). The smallest segment is 1 minute long.

3.3 Continuous Location Recognition

Walking Recognition The first step towards location recognition from a real
life, continuous data stream is the detection of walking segments. As shown in
Table 1 a frame by frame walking recognition (walking vs. not walking) showed
an accuracy between 69% and 95% (mean 82%). However, for our purpose the
mere accuracy is not the main concern. Instead we are interested in minimizing
the number of false positives, as the subsequent location recognition works cor-
rectly only if applied to walking data. Here a mean of 18%(over all experiments)
it is definitely to high.

As a consequence a false positive penalty has been added to the classifica-
tion algorithms. Tests (see Figure 3) have lead to a minimal false positive rate
considering a misclassification of ’Not Walking’ four times worse than a misclas-
sification of ’Walking’. While the overall correct rates goes down to between 61%
and 85% (mean 76%), the percentage of false positives for ’Walking’ is reduced
to an average of 4% (between 0.5% and 7%).
The best results for the walking recognition is provided by the C4.5 tree algo-
rithm with a mean of 82%, the worst by the Naive Bayes Simple with a mean of
65%.

In the next step the effect jumping window smoothing was investigated show-
ing an average false positive rate of 2.17% with 84% of the windows being cor-
rectly recognized.

Walking Segments Location In the last walking recognition step the walking
segment location was applied to the smoothed frame by frame results. This has
lead to 124 segments being located, none of which was located in a non-walking
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Fig. 3. Relation between correctly classified and false positives for walking

Person1 P2 P3 P4 P5 P6 Mean

Frame by Frame Correctly Classified 95 69 87 78 82 85 82.67
False Positives for Walking 14 8 26 10 34 18 18.33

Frame by Frame Correctly Classified 83 61 78 75 79 81 76.17
with penalty False Positives for Walking 3 5 0.5 8 6 6 4.75

Frame by Frame Correctly Classified 93 72 89 85 78 92 84,83
penalty, jumping window False Positives for Walking 2 3 1 2 2 3 2.17

Table 1. Overview Classification for Walking in Percent

section. As shown for an example data set in figure 4 the only deviations from the
ground truth was the splitting of single segments and the fact that the detected
segments were in general shorter then the ground truth segments. However in
terms of suitability for location recognition this is not relevant.

Frame By Frame Location Recognition With the walking segments de-
tected the frame by frame location recognition was applied. The results are
shown in 2. They were later improved using the jumping window smoothing
method which has lead to the results shown in 2 and 3.3.

The confusion matrices depicted in Table 3.3 indicate that the sensors at-
tached to Head and Breast, as well as, Trousers and Wrist are most often con-
fused. Especially, the confusion between Hand and Trousers is significant in size.
One possible reason is that the movement pattern of Hand and Leg is similar
while walking, particularly if the test subjects swings with the hand.



a b c d ← classified as

856 2 87 5 a = Head
21 804 0 12 b = Trousers

101 32 765 4 c = Breast
0 103 5 819 d = Wrist

Table 2. Mean of C4.5 over all data sets for pre-labeled frame-by-frame ( 89,81 %
correctly classified)

a b c d ← classified as

567 4 94 4 a = Head
3 431 3 178 b = Trousers

83 32 678 10 c= Breast
12 155 24 754 d =Wrist

Table 3. Mean of C4.5 over all data sets for frame-by-frame using frame-by-frame
walking recognition ( 80 % correctly classified)

Event Based Location Recognition In final step majority decision was per-
formed in each segment leading to an event based recognition. Just like in the
hand segmented case the recognition rate was 100 %.

4 Conclusion and Future Work

The work described in this paper constitutes a first step towards the use of
sensors integrated in standard appliances and accessories carried by the user
for complex context recognition. It is also motivated by the relevance of device
location for general user context.

We have introduced a method that allows us to recognize where on the user’s
body an acceleration sensor is located. The experimental results presented above
indicate that the method produces surprisingly reliable results. The method has
found all walking segments in each experiment and has produced perfect event
based recognition. Note that for practical use such event based recognition and
not the less accurate frame by frame results that are relevant.

Despite this encouraging results it is clear that much work still remains to
be done. The main issue that needs to be addressed is the detection of location
changes that happen when the user is not walking and short duration location
changes occurring during walking (e.g. taking out a mobile phone events during
walking). Here, we see communication and cooperation between different devices
as the key. Thus, for example, if all devices but the one located in a breast
pocket detect walking then it must be assumed that something is happening
to this device. Similar conclusions can be drawn if devices known to be in the
trousers side pockets detect the user sitting and all but one devices report no or
little motion while a single devices detects intensive movement. How such device
cooperation can be used in real life situations and how reliable results it can
produce is the subject of the next stage of our investigation.



a b c d ← classified as

965 2 31 2 a = Head
0 847 4 49 b = Trousers

42 0 883 1 c= Breast
17 68 10 921 d =Wrist

Table 4. Mean of C4.5 over all data sets for both smoothed walking and location ( 94
% correctly classified)
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Fig. 4. Sample set containing different approaches for recognizing the walking segments

Another interesting issue is the study of how well the recognition method
can distinguish between locations that are close to each other on the same body
segment. Finally we will need to see how well the actual context recognition
works with standard appliances given only approximate location and not a sensor
tightly fixed to a specific body part.
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