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Abstract

We present the Vocal Cords Sensing Dataset (VCSD), a multimodal
dataset for analyzing singing pitch skills using surface electromyo-
graphy (EMG) and ultrasonography (UI). The dataset includes over
three hours of recordings from 16 participants with varied singing
experience, capturing EMG signals and ultrasound vocal fold mo-
tion. VCSD supports the recognition of vocal pitch control and
muscle coordination during the pitch singing. Initial analysis shows
significant differences in EMG stability and vocal fold dynamics
between novice and expert singers. This dataset enables future
research in vocal training, physiological sensing, and interactive
feedback design.
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1 Introduction

Vocal training, particularly for techniques such as belting [5], re-
quires fine-grained control over pitch and vocal fold coordination.
These tasks engage intrinsic laryngeal muscles such as the thy-
roarytenoid and cricothyroid under highly dynamic conditions [17,
19]. However, students often struggle to understand the muscu-
lar basis of vocal production, and traditional feedback—typically
through auditory instruction, spectrogram review, or invasive laryn-
goscopy [15]—is often limited to instructor-guided or static envi-
ronments. Subjective assessments by instructors can vary in pre-
cision [9], and opportunities for self-reflection on muscle use are
scarce, particularly during rehearsals or live stage practice.

Wearable sensing technology now enables non-technical users
to access physiological feedback in natural environments [2, 10, 12,
13, 20]. Prior research shows that electromyography (EMG) and
Singing Power Ratio (SPR) metrics can differentiate between novice
and expert singers [14, 18]. Electromyography (EMG) and ultra-
sonography (UI) are methods to measure muscle movements [1,
7, 8]. The tension of muscles [17], such as the thyroarytenoid and
cricothyroid muscles, allows pitch control in voice production.
Building on this, biofeedback tools have potential to support reflec-
tive learning and independent skill acquisition in vocal training.
However, existing datasets for this purpose remain scarce.

To address this gap, we present the Vocal Cords Sensing Dataset
(VCSD), a multimodal dataset designed for singing pitch skill recog-
nition and vocal muscle sensing. VCSD combines surface elec-
tromyography (EMG) and ultrasonography (UI) to capture the vocal
muscle activity and vocal fold dynamics of singers with different
skill levels. This dataset enables enables the development of new
methods for vocal skill recognition, feedback, and bio-sensing-based
interaction [3].

2 Sensors and Data Collection

The primary goal of this study was an exploratory analysis of the
activity of vocal muscles during singing using EMG and UI to in-
vestigate whether these sensing technologies can capture different
levels of proficiency in singing [3]. For this, we collected a Vocal
Cord Sensing Dataset (VCSD).
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Intermediate

Dataset Sampling Novices (1-10) Amatuers (11-13) Experts (14-16) Total Size
Subject - 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 16
Pitch Range (the G2-E6 F3-F4 C3-C4 F3-G4 C3-B4 G3-D5 G3-D5 D3-C5 G3-C5 F3-D5 F3-D5 F3-E5 F2-C5 G2-E5 E3-E6 D3-E6 G2-C6 G2-E6
number of pitch) @7) (14) ® ©) ) 12 (12) @ an @3 13 14 (19 @0 (@) (@2 (@5
2-channel 2000 hz/s  316s 253 179s  383s  348s 277s  342s 130s 2455 329s  298s  249s  421s  139s 4955  524s 49285
EMG Data
Ultras‘r’)’;‘t’fraphy 30 fps 2735 333 264s  287s  217s  213s  280s  336s  232s  288s  333s  288s  368s 4835 583  360s 51385

Table 1: Statistics of the VCSD datasets: EMG, Ul, and pitch range for 16 users across skill levels (Novice, Intermediate, Expert)

Flve Key Points Open Position Closed Position

G2 A2 B2 C3 D3 E3 F3 G3 A3 B3 C4 D4 E4 F4 G4

~

+300pV

opv

!

-300pv

Time (s)

Figure 1: Left: EMG sensor placement and visualization of a sample of raw EMG data accompanied by muscle/cartilage position
annotations. Right: Positioning of the ultrasonography probe and sample of raw ultrasound imaging data accompanied by

muscle/cartilage position annotations.

2.1 Devices and Setup

We collected two types of data to directly measure muscle activity
across various pitches: EMG and UL A camera microphone collected
audio reference.

EMG Setup: To capture EMG, we used Delsys Trigno Wireless
EMG sensors to measure vocal muscle activity. The sensor was

positioned between the Adam’s apple and the first bone below.

The data was captured at 2000Hz and down-sampled to 30Hz for
analysis.

Ultrasonography: The CONTEC CMS600P2 Digital B-Ultrasound
Diagnostic System was employed. Participants held the probe at
the front of the larynx, capturing images at 3.5 MHz and video at 30
fps. Ultrasonography was used only in the novice study for visual
feedback on vocal muscle activity. Due to its bulkiness, this method
was not used in the professionals study.

2.2 Dataset Description

The VCSD dataset comprises over three hours of synchronized

multimodal recordings collected during structured vocal exercises.

It includes two-channel electromyography (EMG) signals sampled
at 2000 Hz, ultrasonography (UI) videos captured at 30 frames per
second, and synchronized audio-video recordings of participants
for reference. These recordings were obtained under controlled
pitch-singing tasks designed to elicit measurable differences in
vocal performance. An overview of the data structure is provided
in Table 1, and representative sensor placements along with raw
signal examples are shown in Figure 1.
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2.3 Participants & Recruitment

We recruited 16 participants (6 female, 10 male, aged 21-33, mean=25.7)
from two local institutes. Ten participants were beginners with little
vocal training experience, and three participants were intermediate
amateurs who had basic vocal knowledge. The remaining three par-
ticipants were experts who experienced professional vocal training
for more than 10 years. Novice and experienced participants were
provided a 1000 yen gift card per hour as reimbursement for their
participation in the study. Expert participants were reimbursed with
10,000 yen as compensation for their time and effort. The collection
process was approved by the IRB of the local institutes. All data
collected within the scope of this study are anonymous and are
only released with the approval of the participants.

2.4 Study Procedure

1) Welcome & Familiarization: Before data collection, the partic-
ipants were informed about their rights and the implications of
their participation. When agreeing to participation and use of their
data, they signed a consent form. Then, an initial questionnaire
was given to collect the participants’ demographics and their vo-
cal training experience. Next, participants were introduced to the
sensing devices and the task, followed by a 5-minute practice ses-
sion to familiarize themselves with the sensing devices and the task.

2) Singing Task: The participants were asked to do their best to sing
a vocal scale, for example, ranging from G3 to A4 according to the
scientific pitch notation (SPN). To support them, we played an 80
bpm piano guidance sound of the scale in real-time as a reference.
The participants were asked to closely follow this reference and to
maintain a 2-second duration per pitch. Each participant performed
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Figure 2: Comparison of the stability calculation derived from EMG data and the measured vocal cord length via ultrasonography
across a pitch range from G3 to G4. Upper: a set of a participant’s raw EMG imaging data; Bottom: a set of a participant’s

ultrasound imaging data, each spanning over one octave.

the task using the two sensing devices EMG and UI, respectively.
Each session was repeated four times, resulting in an eight-round
data collection. The order of sessions was counterbalanced among
each user to reduce any learning effects.

3) Exit Interview: Finally, the participants were interviewed about
vocal training and their impressions of the two sensing technolo-
gies.

3 Feature Extraction

Since the raw data consists of noise and redundant information, we
first post-processed the data and analyzed the results from different
perspectives, to obtain insights from the collected data.

3.1 Data Processing

EMG. Since our focus was on the stability and controllability of
the cricothyroid muscle, we tried to extract stability information
from the data. The raw data was first denoised through a moving
average filter (window size = 10ms), then a Hilbert transform was
performed to calculate envelopes of the signal [4, 11]. The stability
of muscle activity [6] s was then calculated as follows:

-1

1 N
S=N—1

t=

Aptq
20log—— 1
[120l0g A, [ (1)

—_

Ay denotes the previous envelope value of the filtered EMG at
timestep t. This equation is designed with reference to shimmer
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measurement in voice, which is frequently used in the field of
acoustic analysis [16]. Dividing among envelopes allows calculating
the stability of each pitch and comparing the differences in scales
between each participant.

UL The Ul video had to be quantified for analysis. Therefore, we
developed a landmark detector for tracking the vocal cord muscle
from the ultrasonic images. Here, we focused on five important key
points in the video: start points (connection) of two vocal cords,
ends of the inner side of vocal cords, and the end of the outer side of
vocal cords, as shown in Figure 1. These five points discern changes
in the true vocal cord structure and cartilage position based on
previous research [8]. Since the shape of the vocal cord differs for
each participant, we manually annotated the key points on an initial
frame for each session. These key points were further tracked using
a Kanade-Lucas-Tomasi (KLT) tracker. With the positional data
from the five key points, we computed the length of the true vocal
cords (depicted in red in Figure 1) as follows:

1 Py + P,
=1 (Dist (p M)

Prot +P,
+ Dist (Pz,s, %)) )

4 Benchmark Analysis

First, to assess the ability of EMG and UI signals to distinguish
between levels of vocal expertise, we conducted a repeated mea-
sures ANOVA among the three groups of different level partici-
pants (beginners, intermediate amateurs, experts). The ANOVA
revealed significant differences for EMG (F(1.449, 13.04) = 8.752, p =
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0.0065), and UI (F(1.508, 12.07) = 183.3, p = 0.0001). Post-hoc tests fur-
ther confirmed significant differences between expert and beginner
groups (EMG: p = 0.0059, UL p = 0.001). Since most beginners can-
not “correctly” sing the notes, we focused on the data between the
intermediate and expert-level participants in the following analysis.

EMG. For the stability score, we picked up the common range
(G3-G4) of the intermediate and expert groups to perform a deeper
investigation. The results per pitch are shown in the upper figure of
Figure 2. Despite an overall better temporal stability of the expert
group, we found an obvious difference in the higher pitches (F4
and G4), which indicates the ability to control vocal muscles in
high-pitch sounds of the experts.

UL For the vocal length data estimated from the UI, the same
participants were investigated as for the EMG stability. The results
suggest a similar trend as the EMG data that the range of vocal
cords is more stable for the experts (see bottom part of Figure 2).
Even though the UI does not provide any temporal information, it
shows that expert singers can more precisely manage their vocal
cords.

4.1 Skill Differentiation Insights

The analysis revealed clear physiological distinctions between skill
levels. Experts exhibited lower EMG stability scores across all
pitches, with particularly notable differences in higher notes such
as F4 and G4. This suggests that expert singers possess more refined
neuromuscular control during high-pitch vocalizations. Similarly,
ultrasonography data showed that experts maintained longer and
more consistent vocal fold lengths throughout the task, indicating
a greater degree of anatomical control over vocal fold mechanics.
These findings demonstrate that both EMG and UI are capable
of capturing meaningful physiological markers associated with
singing proficiency.

5 Dataset Availability

We plan to publicly release the VCSD dataset in CSV and video for-
mats to support further research in vocal sensing and skill analysis.
The dataset package will include time-series data from the EMG and
annotated ultrasound landmarks represented as (x, y) coordinates,
pitch labels, timestamps, and detailed session metadata. All data
have been anonymized and are shared with participant consent
under institutional ethics approval. The dataset will be hosted on
a public osf research repository: https://osf.io/rbqcv/?view_only=
3821784e313a4533a39c956a3c1dae6d.

6 Discussion

The VCSD dataset provides rich multimodal data for analyzing vocal
performance. While our benchmarks demonstrate its capability in
distinguishing singing skill levels, further work is needed to develop
robust real-time feedback algorithms and personalized training
interfaces.

Limitations include the relatively small number of expert par-
ticipants and the task-constrained pitch range. Future extensions
could incorporate diverse vocal styles, longer phrases, and addi-
tional modalities such as airflow or video-based facial tracking.
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7 Conclusion

We presented the VCSD, a novel multimodal dataset that combines
surface EMG and ultrasonography to capture vocal muscle activity
during singing. By including participants across multiple skill levels,
VCSD enables the development of methods for vocal skill assess-
ment, training feedback, and physiological signal-based interaction.
Initial benchmarks confirm the dataset’s ability to differentiate
singing proficiency through sensor-derived metrics, highlighting
its value for the Ubicomp and HCI communities.
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