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Abstract
In this paper we investigate how vision based devices (cameras or the

Kinect controller) that happen to be in the users’ environment can be used to
improve and fine tune on body sensor systems for activity recognition. Thus we
imagine a user with his on body activity recognition system passing through
a space with a video camera (or a Kinect), picking up some information, and
using it to improve his system. The general idea is to correlate an anonymous
”stick figure” like description of the motion of a user’s body parts provided by
the vision system with the sensor signals as a means of analyzing the sensors’
properties. In the paper we for example demonstrate how such a correlation
can be used to determine, without the need to train any classifiers, on which
body part a motion sensor is worn.

1. Introduction
Cameras are increasingly becoming ubiquitous in public

spaces. Continuous progress in computer vision has made it
possible to spot persons track their motions in real life settings.
Additionally, structured light systems such as the Kinect have
brought simple 3D motion tracking capability into the private
domain.

In this paper we investigated how such video based ap-
proaches can support personal, on-body sensor based activity
recognition (AR). The basic vision is to facilitate ”opportunis-
tic” use of video based devices already there rather than the
dedicated design of systems that combine on body sensors
with video processing. Thus, we imagine a user with his on
body AR system passing through a space with a video camera
(or a Kinect), picking up some information, and using it to
improve his system. This implies two basic assumptions:

1) For privacy (and sometimes bandwidth) reasons, trans-
mission of the raw video stream is not accessible on
wearable devices.

2) No activity and/or user specific training of the video
based system can be assumed.

Thus, the best we can expect to acquire from the video system
is a set of abstract, general purpose features. If these are
abstract enough to not pose a privacy threat, cameras in public
spaces could make them available to any device within the
local network. But how can on body sensor based AR systems
make use of them?

In this paper we propose to use such features for self-
calibration of body worn motion sensors rather than for the
enhancement of any specific AR task. Our approach is based
on two observations:

• ”Stick figure” like motion trajectories of body segments
(limbs, torso, head etc.) are now easily derived from video
based systems (e.g. the Kinect).

• These trajectories can be used as ”ground truth” on the
motion of individual body parts. By correlating it with the
information provided by sensors attached to those body
parts we can characterize, calibrate and/or optimize their
performance.

These improvements would also persist outside the field of
view of the video system, potentially having a long lasting
effect on system performance.

1.1. Paper Scope and Contributions
We consider two concrete examples of correlating body

motion information derived from a video signal with on
body sensor information to improve the on body system: (1)
determining the location of the sensors on the user’s body
and (2) recalibrating smart phone based inertial navigation
systems. Since the focus of this work is not on computer
vision but on methods for effective correlation of the different
motion signals, we use a Kinect system to obtain the video
based motion information.
Locating the sensors on the users body. On body sensing
increasingly relies on sensors integrated in consumer devices
(e.g. phones, watches). While attractive regarding wide ac-
ceptance, device placement concerns are always an issue.
Regarding signal interpretation, whether a phone is in a pocket
or an arm holster can make a big difference for a variety
of sensors ( [10], [22]). Previously, we have shown that a
classifier can be trained [11] to recognize the on body location
from acceleration signals. In this paper, we show how the
location can be recognized without the need for training by
correlating the signal received from an on body inertial sensor
with video-based body part trajectories.
Recalibrating inertial navigation systems. . Using a smart
phone in a pocket for indoor navigation (Pedestrian Dead
Reckoning, PDR) is attractive and extensively studied [19].
While reasonably accurate over short distances, eventually all
systems suffer from drift issues and unbounded accumulation
of errors (since the path is the double integral over the
acceleration, errors increase exponentially). Thus, PDR is



always combined with recalibration using some sort of external
information such as RF beacons, map analysis or collaboration
between devices [23], [8]. Cameras, especially with a limited
field of view, offer another recalibration possibility. Obviously,
the user being visible constrains his position to the area
covered by the camera. However, persons in the image must be
matched to persons using the pdr app. In a public space, face
recognition may be neither feasible nor desirable for privacy
reasons. We show how to use the correlation between abstract
body parts trajectories and motion sensor data from a smart
phone to link a particular person in the image to a particular
PDR system. This linking could be done on the user’s phone,
based on features made public by the camera, thus avoiding
privacy issues.

1.2. Related Work
Several research work focuses on detecting the on-body

placement/orientation of devices just using inertial motion
sensors [7], [9], [10]. The most common way to deal with
on-body placement issues is to use placement-robust fea-
tures [13]However, these approaches are limited to very simple
activity recognition problems (e.g. modes of locomotion).

Traditional computer vision approaches use one or multiple
cameras to localize, track and identify persons [3], [15]. Due
to lighting changes in real world environments etc., systems
relying on cameras alone have their limitations [15].

Some works combine motion sensors with cameras to
identify, localize and track people/objects [1], [20], [18] Plotz
et. al. present a method to automatically synchronize sensor
data streamed from accelerometers with video cameras [16].
Yet, they introduce special synchronization gestures the users
have to perform. Most prominently, Teixeira et. al. identify and
localize people by correlating the accelerometer signals from
their mobile phones with video from CCTV cameras [21].
Their experiments and methods are quite impressive. They
use a mesh of multiple CCTV cameras for localization,
identification and tracking on a person level. In contrast, we
are not aiming to create a system capable of tracking users.
Rather, we try to aid established on body systems embracing
both privacy and simplicity concerns.

The bulk of the research uses standard 2D cameras, making
the inference task more error-prone. All of these papers just
aim at identifying or tracking a particular person, they do not
infer on which body part the motion sensor is mounted. They
do not focus on using the camera for auto-calibration of a
recognition system.

2. Locating sensors using Kinect
Many sensing modalities are very dependent on their on

body position. Obviously, the signal of inertial motion sensors
varies heavily with the on-body location [9], [10]. However,
the on-body location of a device also affects other sensor
modalities, from audio over wifi signal strength to GPS
signals [6], [22]. Thus, it is of tremendous advantage to easily
locate them without the need for previous training and with
some robustness concerning their individual placement (i.e.
some small rotation or translation should be tolerated). We

demonstrate that this is indeed possible using a simple depth
camera like the Microsoft Kinect.
We chose the Kinect as it is readily available and already
includes a large set of libraries (e.g. translating actors into a
skeleton of joints); it is feasible to use any of the multitude
of commercially available computer vision systems to achieve
the same results.
2.1. Experimental Setup and Dataset

Hardware: we used the XBus sensor platform with 5
connected XSENS sensors as inertial motion system and a
Microsoft Kinect as a video system. The XSENS modules
were placed at the upper and lower arm, the chest, the side of
the lower torso (roughly corresponding to a coat pocket) and
on the upper leg. To account for variance in sensor placement,
5 runs were performed, with randomly rotated (in steps of 45
degrees) and slightly translated (randomly moved by about
5cm) sensors. It is important to emphasize that we did not
intend to create entirely new placements for each run. Rather,
we wanted to demonstrate that one could deal with small shifts
that might result from people putting on sensors themselves
or sensors shifting during movement. The data recorded by
the Kinect consisted of 3D-coordinates for 20 joints using the
MS Kinect SDK. Given these joints, it is then possible to
represent entire limbs as vectors spanned by subsets of points.
The upper arm, e.g., can be represented as the vector between
right shoulder and right elbow. From the time series of these
vectors, angular velocity or acceleration can be estimated.
With our equipment, the Kinect skeleton model library pro-
cessed about 30 fps, which provided enough detail for our
analysis. While the XBus is capable of up to 100Hz, we set it
to the same rate, both to avoid dealing with widely different
sampling rates between data sources and to better simulate the
capabilities of mobile devices.
In all 5 runs, each subject performed 4 different activities,
namely walking, writing on a white board, climbing stairs
and using a dishwasher (opening it, taking out and putting
in a cup, closing it). All of these could be conceivably spotted
by cameras mounted e.g. in hallways, stairwells or conference
rooms. All activities were performed five times per run, for a
total of 25 times per subject.
Our experiment included 7 subjects, 3 female, 4 male, ranging
in age from 23 to 46.
Thus, in total, we recorded 700 individual actions (7 subjects
x 5 runs x 4 activities x 5 repetitions) for every sensors.
2.2. Evaluation Approach

We built our evaluation around two premises:
1) Features and techniques used should be as generic as

possible, ideally requiring no manual intervention (i.e.
no ”use this feature for that activity but the other one
for ...”).

2) Our system should not require training but should be
usable as is, out of the box.

As an added difficulty, the data acquired from both sources
is not comparable as is. Kinect delivers 3D-coordinates (and
thus trajectories in space), while XSens yields acceleration



and angular velocity. For the acceleration case, three possibil-
ities present themselves: differentiate the Kinect trajectories 2
times, integrate the XSens acceleration 2 times or meet in the
middle (1 differentation and integration).
All three approaches can lead to large errors because of the
two linear transformations required. Using angular velocity,
the situation is less error prone; one differentiation of the
Kinect data leads to angular velocity data that can be directly
compared to gyroscope data.

With the above in mind, we explored features ranging from
frequency based approaches to matching trajectories in space
to comparing changes in angles. Ultimately, the two features
that worked best were the change in vertical angle and the
variance in horizontal angle. For the Kinect: The vertical
angle is given as as angv(t) = |g(t)∗limb(t)|

|g(t)|∗|limb(t)| (with g(t) the
vector of gravity and limb(t) a limb given by two Kinect
joints) and the change in angle as angv(t + 1) − angv(t). It
might seem obvious to use the change in horizontal angle as a
second feature. In reality, however, it is a lot more difficult to
determine the direction of forward (as compared to ”down”,
i.e. gravity [12]) and thus align the two coordinate systems
of Kinect and XSens. Resorting to the variance of horizontal
angle eliminates this difficulty, since no absolute orientation
is required for it.
For the XSens, both features could be gleaned directly from
the gyroscope data, as each XSens has notions of down and
forward. This is no contradiction to our previous statement:
even though both systems have those notions, the ”forward”
axes are arbitrary; XSens defines it in relation to ”North”
gathered from compass data (fraught with error indoors).
Kinect simply uses the direction its cameras are facing. While
aligning them is theoretically possible, it is difficult and not
necessary with our features. It should also be noted that while
these two features do not use acceleration, it is very important
in determining the vector of gravity [10].

Given these features, a suitable unsupervised technique
of matching them between sensors and Kinect was needed.
Simply comparing the signal frame by frame (subtraction /
correlation) proved inadequate (e.g. due to timing issues). We
therefore explored other options and settled on Dynamic Time
Warping (DTW). DTW treats both of the signal time axes as
dynamic; i.e. a point xt of signal 1 may be matched to a
point yt+j of signal 2, where j is a parameter of the DTW
method (the larger, the more distant points in time may be
matched). A more detailed summary of DTW can be found
in [17]. When applied to two signals, DTW yields both an
absolute distance measure as well as the list of timestamps
matched to one another. This list is useful on its own: it can
e.g. be used to calculate a correlation between signals that
incorporates timing issues.

Assembling the steps detailed above yielded this algorithm
for each activity:

1) Calculate the change of angle features both for the five
Kinect positions as well as for the XSens in question.
Each XSens was considered on its own. Doing otherwise
would render this a discriminative problem (”which of

the 5 sensors is worn where”), which is a simpler subset
of the problem we present here.

2) Calculate the DTW distance and timestamp matches for
the XSens signal and each of the five Kinect positions.

3) Pick the winner according to the minimal distance found
4) Calculate the correlation between both signals according

to the timestamp matches and square it. This serves as
a normalized confidence measure later on.

5) Perform a majority decision on the 5 runs done and
average the confidence measure.

6) After executing steps 1 to 5 for each activity, pick the
one with the highest confidence as global winner.

A note on 4-6: distances vary quite a bit between activities.
Correlation alone proved worse for picking a winner. Also,
some activities are more suited to recognize some positions
than others. Steps 4-6 combine the strength of both measures.
2.3. Results

Pants Coat Chest Upper arm Lower arm
Walking 94 40 46 71 77
Writing 54 37 57 94 97

Stairs 94 43 43 63 74
Dishwasher 51 63 60 83 83

Fused 94 53 60 94 97

TABLE 1. Accuracy for each activity by sensor position (all
values are percentages)

This algorithm was applied to the entire dataset, resulting
in 35 runs (5 repetitions x 7 subjects) for each of the 5
sensor positions. Table 1 lists our results by sensor position.
Accuracy is defined as correct results / all. Three locations can
be identified very reliably. These are pants (94%), lower arm
(97%) and upper arm (94%). For the pants, both walking and
climbing stairs are very suited to recognize the position. For
lower and upper arm, writing on a white board serves as a very
distinguishing task. It is, however, also readily apparent that
not all positions can be identified with high accuracy. Both
the coat pocket at 53% as well as the chest at 60% perform
quite a bit worse than pants, upper arm and lower arm. There
are two reasons for this: first, the Kinect provides joints for
knee and left / right hip as well as hand, elbow and shoulder.
These match the sensor positions quite well. On the other hand,
”resolution” is a lot more coarse for the central body, with only
HipCenter, Spine and ShoulderCenter available. Second, there
is also a lot less movement in the central body when compared
to the extremities. Less motion overall necessarily increases
noise compared to useful data. Both values, however, are still
a fair bit above random guessing, which, for 5 possible sensor
locations, would amount to a 20% chance of guessing right.
3. Identifying mobile sensors using Kinect

Next we need to identify the mobile sensors and matching
them to other data, e.g. locations. We present a Kinect based
system that is able to match data gathered from mobile phones
to people passing in front of it.
3.1. Experimental Setup and Dataset

5 subjects (4 male, 1 female) walk randomly between four
rooms at three speeds in an office space. A Kinect is mounted



on the ceiling of the hallway connecting these locations. Each
subject carries a mobile phone in a pocket of their pants. The
device logs acceleration and gyroscope data as well as runs a
personal dead reckoning system also developed at our lab [8].
The entire experiment is recorded by video camera as ground
truth. All five participants perform the experiment at the same
time. Each subject does about 50 walks, for a total of 250
walks. 178 of them passed in front of the Kinect (see Figure
1).

Fig. 1. Matching mobile phones to Kinect data - Setup
3.2. Evaluation Approach

A match between mobile device and Kinect is possible on
two levels. Both raw data (acceleration and gyroscope) as
well as trajectories generated by the pdr system are feasible
candidates. We opt to match on the signal level first for two
reasons:

1) Raw data is usually available from most devices; running
a pdr requires a dedicated app.

2) Pdr systems become less reliable the longer they run
without recalibration. Using positive matches by the
Kinect in a feedback loop to the pdr app is interesting,
but outside the scope.

We used the features described above and also DTW as a
matching algorithm. To be thorough, we also tried to match
the pdr and Kinect trajectories. As expected, results were
mediocre: 46% (random chance: 20%) of Kinect traces were
identified correctly. This showed, however, that there was
valuable information in the pdr traces. To utilise it, we used
coarse direction as a filter. With a very generous margin for
error, we had the pdr system tell us if a person was moving
across or along the hallway and if it was moving towards or
away from the Kinect, resulting in this algorithm.

1) For each trace, isolate the raw signal and trajectory infor-
mation from all 5 mobile devices based on timestamps

2) For each of the 5 devices, calculate the change of angle
feature and match it by DTW to the Kinect signal.

3) In case there is an almost perfect match, pick that one
as the winner. Else, continue.

4) For each of the 5 devices, analyse the pdr trajectory. If
the device was not moving along the hallway in the right
direction, eliminate it from the pool. Pick the winner
based on step 3 distance from the remaining ones.

3.3. Results
Matching phones and Kinect on raw data alone achieved

an accuracy of about 73% (random chance at 20%). For an
unsupervised method, this is a fair result. Adding the pdr
information significantly boosted accuracy to 92% (i.e. 164
of 178 traces were matched correctly).

4. Conclusion
We have presented two examples of leveraging a basic ”stick

figure” like description of user motion of a video system to
support on body sensing and AR. At the heart of our vision is
the notion of ”opportunistically” using devices that happen to
be in the users’ environment without the need for dedicated
training or transmission of privacy sensitive raw images. We
believe that given the rising omnipresence of cameras such
an approach can have significant benefits, in particular in
conjunction with sensors in consumer devices such as phones,
music players and watches.
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