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ABSTRACT 
In this work, we explore a new sensing technique for smart eyewear 
equipped with Electrooculography (EOG) sensors. We repurpose 
the EOG sensors embedded in a JINS MEME smart eyewear, orig-
inally designed to detect eye movement, to detect midair hand 
gestures. We also explore the potential of sensing human proximity, 
rubbing action and to diferentiate materials and objects using this 
sensor. This new found sensing capabilities enable a various types 
of novel input and interaction scenarios for such wearable eyewear 
device, whether it is worn on body or resting on a desk. 

CCS CONCEPTS 
• Human-centered computing → Gestural input. 
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1 INTRODUCTION 
Wearable computing is becoming pervasive in our life with the 
proliferation of wearable devices such as smartwatches, ftness 
trackers, and smart eyewear. In particular, smart eyewear such as 
the Google Glass [5], JINS MEME [8–10], North Focals [13], Snap’s 
Spectacles are becoming popular. It is also rumored that both Ap-
ple and Facebook are working on Augmented Reality (AR) glasses. 
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Figure 1: JINS MEME EOG electrodes placement on the nose 
pad and nose bridge. This placement makes the it non obvi-
ous and the device looks like a normal pair of glass. 

These eyewear devices normally include various sensors, including 
inertial measurement unit (IMU), microphone and optionally cam-
era(s) for sensing and tracking the context, environment and hand, 
under various real-world conditions. Some of these eyewears are 
also equipped with output capabilities such as display or speaker 
for immersive interaction in AR and VR environment. 

However, due to privacy concern [4], people are wary of eyewear 
with obvious form factor, especially those equipped with camera(s), 
such as the Google Glass, Snap’s Spectacles or Microsoft HoloLens. 
Therefore, there is another trend of smart eyewear with subtle 
design, where it looks like a pair or normal glass, yet it can still 
provide basic but useful functionality, such as the North Focals 
(minimal display for notifcation) or JINS MEME (no display). 

For example, JINS MEME is a smart eyewear that looks just like 
a basic pair of glass [9, 10] (Figure 1). Yet, it has Electrooculography 
(EOG) electrodes that are built into the nose pad and nose bridge, 
which is not obvious at all. The EOG sensors on JINS MEME are 
used for sensing signal related to human eye, such as eye motion, 
eye movement [3, 15] and eye blink [16]. On a higher level, it can be 
also used for tracking alertness [17], cognitive and social interaction 
assessments [2], activity recognition [7, 19], fatigue [17], reading 
words [6], among the others. 

Recent work shown that it is possible to repurpose the EOG 
sensors on the eyewear for facial action detection [14] and nose 
touching interaction [11]. These research inspire our work here. 
However, previous work are contact-based sensing where the elec-
trodes touch the skin. Here, in JINSense, we try to achieve non-
contact based sensing. In particular we are interested in (i) midair 
hand gesture sensing (ii) human proximity sensing and (iii) material 
diferentiation. 
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Figure 2: The raw EOG sensor signals show unique pattern when diferent hand gestures are performed. This fgure shows the 
gesture left, right, up and down. 

Figure 3: This fgure shows the EOG signal for gesture hover and pull, push + pull quickly, rotate clockwise and counter-
clockwise. 

Figure 4: This fgure shows the EOG signal for gesture palm wiggling, fnger alternating up down and palm alternating up 
down. 

2 RELATED WORK 
In related work, midair gesture are typically detected using cam-
era, microphone, capacitive sensor, infrared sensor or even radio 
frequency (e.g., radar sensor). To the best of our knowledge, EOG 
sensor has not been explored for midair gesture detection. 

3 SENSOR BACKGROUND 
Our eyes behave as dipoles with a constant electrical potential with 
the cornea acting as positive and the retina acting as the negative 
pole. The magnitude of this corneoretinal potential (CRP) is in the 
range of 0.4mV to 1.0mV [1]. If we move our eyes also the dipole 
and the electrical potential moves. This movement can be captured 
using electrodes taped around the eye (usually measuring the po-
tential change left/right for horizontal and up/down for vertical 
movement). This procedure is called Electrooculogram. 

In the JINS MEME hardware, there are three EOG electrodes, 
one placed on the nose bridge and one each placed on the left 
and right nose pad. We can measure potential �� as the potential 

between electrodes left and bridge (Figure 1), and �� as the potential 
between electrodes right and bridge [18]. Then we can calculate 

= −(�� + �� )/2 as is the up-down eye movement and 
�ℎ��������� = �� − �� as the side-to-side eye movement, assuming 
that eye balls move in the same direction. 

Nonetheless, the equations above only apply to eye related signal 
when the device is worn as usual, where the EOG electrodes directly 
touch the user skin, and therefore the extracted raw data consists of 
mainly eye motion signal. However, when the user is not wearing 
the device, such as when being left on a desk or hang in the front 
pocket, the electrodes work in a way that is similar to electric feld 
sensing. It senses the disturbance in electric potential diference 
in the surrounding air. These disturbances can be caused by hand 
gesturing nearby the sensor, or human body moving nearby the 
sensor. We can exploit this phenomenon and repurpose the sensor 
for sensing new modalities such as hand gesture detection, human 
proximity sensing and material diferentiation. Example signals for 
these gestures are shown in Figure 2, 3 and 4. From these fgures, 
we can observe the diference between signals of diferent gestures. 

��������� 
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4 IMPLEMENTATION 
To explore whether we can recognize midair gestures using this 
built-in EOG sensor on the JINS MEME device, we developed a pro-
totype system that can collect, train, and classify diferent gestures 
from the signals. In this system, we stream raw data from the JINS 
MEME device over Bluetooth to a remote laptop for real-time signal 
processing and machine learning classifcation. We implemented 
the software in Python with libraries. In particular, we used Pygame 
for the user interface, SciPy for signal processing, and Scikit-learn 
for recognizing midair gestures with machine learning classifers. 

Initially, we took a simple approach using heuristic rules as a 
frst attempt at achieving real-time gesture recognition without 
relying on machine learning. This approach calculates the peak 
and valley of the signal with predefned thresholds and classifes 
the gestures. However, the accuracy was far from usable, hence we 
proceed to employ machine learning approach. 

Next, for the machine learning approach, our signal processing 
pipeline segments the data into one-second windows and we use 4 
signals from the JINS MEME: EOG left (�� ), right (�� ), horizontal 
(�ℎ��������� ) and vertical (��������� ). Note that the horizontal and 
vertical of the EOG signals are derived from the combination of 
each side and bridge electrode, but horizontal and vertical signals 
are calculated by the left and right signals. We collected fve trials 
per gesture for training and for the online test, we ran the clas-
sifcation every 30ms. We checked the maximum absolute values 
of �� and �� with threshold to distinguish gesture trials and used 
Random Decision Forest to classify gestures, as it was known to 
be fast and has low memory footprint [12]. We perform two types 
of classifcation on the data; one for classifying whether input has 
occurred and the other one for classifying the type of input (e.g., 
gesture left, right or horizontal). 

We extracted 50 features in total from the four EOG signals, in-
cluding 9 individual features from each signal and 14 combination 
features. These are common statistical features used when classify-
ing time series data. The features are (i) deviation of FFT, (ii) root 
mean square, (iii) percentage of positive and (iv) negative values, 
(v) number of positive and (vi) negative peaks of original signal 
and (vii) root mean square, (viii) percentage of positive and (ix) 
negative values of the frst diference between subsequent values 
of original signal. As the signal strength generated from gestures 
are not so signifcant, we also added combination features which 
are derived from two diferent sensor signals. For the combination 
features, we picked aggregation of root mean square values from 
two combinations left/right and horizontal/vertical electrodes, and Figure 6: When the smart glass in placed in front pocket or 
we chose Pearson correlation coefcient value and the maximum collar, it becomes a gesture sensor to detect hand gestures 
cross-correlation value from all possible combinations of signals. on the go. In this case, the user swiped down using his hand, 

and the gesture is detected as vertical. 
4.1 Gesture Recognition 
Although we have not evaluated the system accuracy, our initial 
test shows promising result. It could recognize left/right gestures 
robustly, but not for up/down gestures. Therefore, we group both 
up/down gestures into a single vertical gesture (ignore direction). In Based on our observation, other hand motions such as push, pull, 
total, we can robustly detect left, right and horizontal gestures (Fig- rotate, wiggle also generate unique signal, as shown in Figure 3 and 
ure 5), which is enough for basic interaction. For example, Google 4. We believe these gestures can be robustly detected with better 
Soli radar in the Pixel 4 smartphone could only detect left, right machine learning technique that can extract better features, such 
and push gesture, yet it is enough for basic interaction. as deep neural network, which we left for future work. 

Figure 5: A demonstration of real-time midair gesture recog-
nition using machine learning classifer. The JINS MEME 
smartglass is resting on a desk. The user performed a swipe 
gesture and is correctly detected as a vertical swipe. 
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Figure 7: This fgure shows the EOG signal (left) when an empty plastic bottle is moving on top of the sensor and (right) when 
a plastic bottle flled with water is moving on top of the sensor. The EOG signal clearly shows diference between the two 
conditions and the latter has a strong signal. 

Figure 8: This fgure shows the EOG signal (left) when a plastic bottle is moving on top of the sensor and (right) when the 
plastic bottle is rubbed with cloth from a long distance. 

4.2 Proximity Sensing And Material 
Diferentiation 

In addition, our preliminary test also shows that it can potentially 
support human proximity sensing and material diferentiation [20], 
as shown in Figure 7, 8 and video fgure, although we have not 
thoroughly tested it. Our visualization clearly shows that the signal 
is unique and changing according to human proximity and diferent 
material moving around the sensor. Please refer to the video fgure 
for demonstration. We are still in the process to collect more data 
and to train a robust recognizer to validate these claims. 

In one example (Figure 7), an empty plastic bottle will generate 
signal with diferent amplitude when moved around the sensor, 
when compared to the same plastic bottle flled with water. Interest-
ingly, the empty bottle causes the sensor to pickup a stronger signal 
with higher amplitude. With this, it might be possible to detect the 
water level of a container, or dryness of an object. 

In another example (Figure 8), rubbing an empty plastic bottle 
from a long distance can still be detected by the EOG sensor (up 
to 1 meter in our test). The EOG signal shows unique pattern that 

can be leveraged for human action or activity recognition. We 
hypothesize this may be related to triboelectric efect or static 
electricity generated when rubbing cloth on plastic bottle. 

In the video fgure, we also show how diferent object and ma-
terial when moved above the EOG sensor will cause the sensor 
to pickup diferent signal, which can be potentially used to dif-
ferentiate object and material. In addition, human body moving 
around the eyewear also caused the sensor to pick up some signal, 
albeit rather weak. Again, more research and experiment have to 
be conducted to validate these claims. 

5 APPLICATIONS AND USE CASES 
While our approach may be limited to non-wearing situation only at 
the moment, we suggest a few compelling use cases and scenarios: 

Interaction with IoT devices – Before going to bed, a person 
who wear glass usually removes the glass and put it on a bed-side 
desk. When she wakes up, she can perform diferent midair hand 
gestures to interact with devices, such as swipe to dismiss alarm, 
push to read out emails, wiggle to read out current time. In this 



JINSense: Repurposing Electrooculography Sensors on Smart Glass for Midair Gesture and Context Sensing CHI ’21 Extended Abstracts, May 8–13, 2021, Yokohama, Japan 

scenario, users are not required pick up the phone and perform 
precise touch input, especially when the user is still sleepy. 

Interaction while user is on-the-move -– When a user fold 
her sunglasses and put in the front pocket or collar (Figure 6), the 
eyewear turns into a front-facing gesture sensor for on-the-move 
interaction using simple hand motion. Users can perform a swipe 
gesture to dismiss notifcation, or to skip to next song. 

Interaction with eyewear when it is docked — The eyewear 
can be left on an ofce desk or docked in car when not needed. 
Then it becomes a powerful gesture sensor for desktop environment 
or car infotainment input controller. Because the eyewear also 
supports proximity sensing, it can intelligently turn of a phone or 
monitor display to save battery when no human presence detected, 
similar to Google Pixel 4 presence sensing using radar. 

Multi-purposes smart sensing -– Since the signals show dif-
ference when diferent materials are moved around the sensor, the 
system can be potentially used for material recognition, water level 
detection and dryness detection. 

6 LIMITATIONS AND FUTURE WORK 
Currently, we have not evaluated the system. In future work, we 
aim to evaluate the system by technical evaluation and user study. 

While the user is wearing the device, because the electrodes are 
touching the skin directly, the EOG signal from eye motion and skin 
motion will be the primary source of signal and it is overshadowing 
the midair signal, making it difcult to extract useful features caused 
by midair motion. Thus our current sensing technique would not 
work while user is wearing the device. Potential solution could be 
multiplexing the sensor. We are also exploring ways to insulate the 
electrodes or to extend the area of electrodes to the outer frame of 
the glass using conductive material. 

For future versions of the glasses it is possible to only focus on 
the electrodes part without the glass frame. The sensing apparatus 
can then be very small in size and therefore it can be easily attached 
on any device such as smartwatch, smartphone, smart speaker or 
home assistant (e.g., Google Home) to support midair gestures. It 
can be also attached on diferent body parts or apparels (e.g., button, 
belt), further enabling compelling use cases. The API makes it easy 
to prototype interaction and this may be a useful toolkit for the 
HCI and UbiComp research community as a whole. 

Finally, we are exploring more compelling use cases that are 
uniquely enable by our sensing technique. This includes touchless 
interaction, discreet interaction and context-aware interaction. 

7 CONCLUSION 
In this work, we have explored new ways to exploit and repurpose 
existing EOG sensors on smart eyewear to achieve new sensing 
capabilities, such as midair gesture detection, human proximity 
sensing and material diferentiation. Our preliminary explorations 
show that the technique is indeed working for gesture detection, 
and the captured EOG signals look promising for human proximity 
sensing and material diferentiation. We believe this sensing tech-
nique will be useful because there is no need to add new sensors 
to a device such as smart eyewear, but instead it is possible reuse 
existing sensors for new capabilities. 
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