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Sensor Placement 
Variations in Wearable 
Activity Recognition

W e’re currently witnessing 
an explosion in sensor-
equipped, on-body consumer 
devices, from smartphones to 
Google Glass to fitness track-

ers. In general, the quality of the sensors embed-
ded in these devices is similar to the ones typically 
found in the dedicated wearable sensing systems 

used in activity recognition 
research, but there’s one major 
difference. With a few excep-
tions,1,2 the bulk of research in 
human activity recognition to 
date assumes known fixed sen-
sor locations, which are often 
carefully chosen to suit a par-
ticular application. In contrast, 
mobile consumer devices typi-
cally aren’t firmly fixed to the 

body—they’re placed in a pocket or bag, where 
they can shift around and rotate into different ori-
entations. Even devices specifically designed for 
concrete placement such as glasses or bracelets 
might at times be carried in a pocket or bag.

Motivated by these considerations, recent re-
search interest has focused on understanding 
the influence of device placement variations on 
activity recognition systems. However, so far, 
that research is fragmented, with most work 
focusing on individual, narrow problems and 
specialized methods. An activity recognition 

 researcher trying to understand how to impro ve 
his or her system with respect to placement 
variations would need to work through a lot of 
papers with no overall conceptual framework. 
This article aims to change that by providing a 
systematic understanding of the type and im-
pact of variations, describing a comprehensive 
set of methods to deal with the different varia-
tion types, and illustrating how such methods 
work and are designed and evaluated.

Understanding Placement Variations 
Generally, we can distinguish between three 
types of device placement variations: on-body 
placement, within-body displacement, and 
orientation.

On-Body Placement
Depending on preference, people carry devices 
on different parts of their body. Variations 
based on these differences are usually coarse—
for example, the device might reside in a front 
or back trouser pocket, a jacket pocket, an arm 
or a hip holster, or a bag.3 Changes in on-body 
placement aren’t as frequent as within-body dis-
placements or changes in orientation—but even 
though several devices are associated with a 
particular body placement (for example, glasses 
are associated with the eyes), changes can still 
occur (the user might put her glasses in a shirt 
pocket or carry them in her bag).

How do placement variations in user-carried electronic appliances 
influence human action recognition? The authors categorize possible 
variations, present a systematic evaluation about their impact on human 
action recognition, and discuss ways to compensate for such variations.
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The influence that the body part on 
which the device is placed has on sig-
nals from motion sensors can be two-
fold: one, some activities are associated 
with specific body parts and sensors, 
such as activities related to subtle arm 
motions (washing hands), and two, 
even for activities that aren’t strictly 
body-part specific, the motion sensor 
signals vary significantly from body lo-
cation to body location (see Figure 1a). 

A device’s on-body location also 
 impacts sound. As Figure 1b indicates, 
differences arise less from body damping 
and more from the absorption spectra of 
the clothing on which a device is placed.

Displacement within a Body Part
Depending on the specific piece of 
clothing, a device can move within a 
pocket or holster and thus might be at a 
slightly different location. In addition, 
a device can shift around if it is signifi-
cantly smaller than the pocket or if the 
holster itself can shift (see  Figure 2).  
The problem of “within body part” 
variations differs in three ways from 
the problem of inferring on which body 
part a device is placed:

•	The placement variations are contin-
uous rather than discrete. 

•	The variations are mostly small, usu-
ally not more than a few centimeters 
and at most 10 to 20 cm. 

•	The placement is likely to change 
more frequently as the device shifts 
around. Therefore, recognizing the 
within-body location is a difficult 
problem, making understanding how 
placement affects the sensor signal 
and defining features that are toler-
ant to it a better approach. 

To investigate the impact of within-
body displacement, we conducted experi-
ments in two gym scenarios: one studying 
locomotion and the other arm exercises.4 
For each scenario, we used four Xsense 
inertial measurement unit (IMU) sensors 
uniformly and randomly distributed over 
the upper leg for the locomotion study 
and the upper arm for the arm exercises 

study. The locomotion exercises included 
eight classes: walking, running, running 
uphill, biking, rowing, walking up stairs, 
skiing, and cross-training. The arm ex-
ercises included using the lat/pectoral 
machine to do shoulder presses, upper 
back stretches, arm extensions/curls, pull 
downs, and chest presses. Two test sub-
jects performed two circuits, with 20 rep-
etitions of each exercise. 

Using just accelerometer data from 
the same location for training (34 
percent) and testing (66 percent), we 
achieved 100 percent recognition for the 
locomotion scenario and 96 percent for 

arm exercises. However, when testing 
and training on a different location, the 
performance dropped to 63 and 24 per-
cent, respectively (see Table 1). Training 
the system on two different locations 
improved the recognition rate, but only 
slightly, to 61 and 31 percent.

Orientation
The final displacement issue is the de-
vice orientation with respect to the 
user’s body. As an example, consider a 
mobile phone in a hip holster. In most 
cases, you can put the device into the 
holster in at least two ways: display 
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Figure 1. Impact of device placement on signals from different types of sensors. 
(a) Acceleration signals recorded from two different body locations while walking. 
(b) The sound absorption spectra of different types of clothing recorded with 
an iPhone microphone. The graph shows signal intensity as a percentage of the 
intensity recorded with a device placed on a table and not obstructed by clothing.
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facing inward or display facing out-
ward; you might also have the option 
of  attaching the holster either vertically 
or horizontally, or be able to place the 
holster at various locations on the hip, 
which would determine its exact hori-
zontal orientation.

In most cases, motion sensor-enabled 
devices are equipped with three-axis sen-
sors, letting us use the signal’s norm as 
a simple orientation-invariant signal. In 
this case, the interesting question is not 

“What influence does rotation have on 
motion signals?” but rather “How much 
information is lost when discarding ori-
entation-sensitive features?” Depending 
on the antenna/microphone, the device’s 
orientation on the body can dampen the 
signals for GPS, Wi-Fi, and sound.

Signal damping. Fixed rules for the influ-
ence of orientation on signal damping 
are difficult to formulate because the 
effect strongly depends on device and 
clothing configuration. Considering 
sound, signal dampening can increase 
if the microphone is oriented toward 
the user rather than the environment 
(see Figure 3).

Loss of orientation information. To show 
what kind of information is lost when 
discarding orientation, we used the stan-
dard locomotion recognition problem: 
distinguishing between walking upstairs, 
walking downstairs, running, or walk-
ing on a level surface. In Figure 4, we 
use Euclidean distance as a measure of 
time-series similarity to compare how 
well those classes are separated by the 
norm and any orientation-sensitive sig-
nals from an accelerometer signal’s three 
individual axes. Even for simple classes 
(which can actually be recognized rea-
sonably well using the norm), the ori-
entation-sensitive features contain a lot 
more information.

On its own, device orientation is par-
ticularly relevant for systems containing 
a magnetic field sensor, as is  increasingly 
the case with modern smartphones. 
Knowing the orientation of the magnetic 
sensor axis with respect to the user’s 

body means that the sensor can be used 
to determine the direction in which the 
user is facing. In turn, this can be used to 
infer the user’s focus of attention (such as 
facing a specific shelf in a store, thereby 
indicating interest in a certain product). 
More details appear elsewhere.5

mitigating Placement 
Variations
We’ve discussed the types of sensor dis-
placement and their effect on varying rec-
ognition modalities, so now we build on 
this conceptual framework to present a 
comprehensive set of methods for deal-
ing with such effects. We don’t provide a 
classical, exhaustive survey: there’s a lot 
of current interest in this topic but not 
much work in the field yet. Our goal is 
to help activity recognition researchers 
make their systems more robust with re-
spect to sensor displacement. For practi-
cal reasons, we provide examples from 
our own work to illustrate key concepts, 
but we take care to include relevant re-
lated  approaches by others as well.

Addressing On-Body Variations
To mitigate the influences of on-body 
placement, we can apply either loca-
tion-independent features or body part 
placement recognition.

Location-independent features and clas-
sifiers. For activity recognition applica-
tions, two strategies are commonly used 
to achieve location independence.

First, for some recognition tasks, we 
can compute features that are inde-
pendent of the body part on which the 
 device is placed. For detecting walking, 

Figure 2. An example of “within body 
part” displacement. The placement of 
the device, although located on the arm, 
can shift up or down.

TAble 1 
Classification results for displaced sensors in a simple gym experiment.

Modality Trained and 
tested on same 
location

Trained on one 
location and 
 tested on another

Trained on two 
locations prior to 
testing

Acceleration 100% 33% 35%

Gyroscope 65% 43% 44%

cut off* — 42% 47%

combined† — 78% 85%

*Just the acceleration features, but ignoring parts where displacement was detected
†Mixes acceleration features for translation and gyroscope from rotation-dominated body parts
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for example, strong peaks between 1 
and 4 Hz in the signal’s frequency spec-
trum are present in all body locations. 
Our previous work shows how to detect 
walking independent of body location 
with up to 95 percent accuracy using 
the acceleration signal norm.6 Other 
work focuses on how to use sensor fu-
sion methods to achieve robust recog-
nition.7,8 As expected, these methods 
require significantly larger, more rep-
resentative datasets for training com-
pared to the non-robust alternative.

Second, classifiers can be trained on 
a combination of different locations. 
Thus, the classifiers automatically se-
lect a feature set that’s as independent 
as possible of the sensor location.9 One 
study7 examined such an approach for a 
multimodal sensor system that included 
different sensors (motion, sound, light), 
three different body locations (shoulder, 
wrist, hip), and eight everyday activities 
(different modes of locomotion). The 
classifiers trained and tested on dif-
ferent locations had up to 20 percent 
worse recall and precision than the ones 

trained and tested on the same location. 
A classifier trained on all three locations 
was only a few percent worse than the 
location-specific classifiers.

We investigated a similar approach 
with respect to sound classification in 
different pockets.10 In the experimen-
tal setup, we considered sound from 
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Figure 3. The influence of orientation on the audio signal absorption spectrum for the (a) Nokia 81 and (b) iPhone 3gs. 
Depending on where the microphone is located on the device, a different orientation will cause it to be more or less obstructed 
by the body or clothing.
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Figure 4. The value of the orientation information for motion sensor-based activity 
recognition, depicting the difference between recordings for different pairs of modes 
of locomotion as expressed by the vector norm (an orientation-invariant feature) of 
the acceleration on the upper leg and the corresponding three vector components. 
Note that the vector components can only be used if the device orientation is known.
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nine household and office appliances 
recorded with an iPhone placed in two 
different trouser pockets, two differ-
ent jacket pockets, a belt holster, and 
the user’s hand. If we trained and tested 
the device at the same location, the rec-
ognition results were 99 percent (see 
Figure 5). If we trained the system with 
the device in hand—that is, without ab-
sorption through clothing (designated 
“clean” in Figure 5)—and tested it on 
different pockets, then the performance 
went down to around 60 percent on a 
frame-by-frame basis, and around 70 
percent for the majority decision over all 
frames in a recording instance. By train-
ing on data recorded from different types 
of pockets, the system learns to deal with 
absorption through clothing, and perfor-
mance can be improved to between 80 
and 90 percent on a frame-by-frame basis 
and 100 percent for the majority decision.

Body placement recognition. Clearly, 
placement-invariant features and mixed 
training works only if there is sufficient 
similarity between signals from different 
body locations. However, if the signals 
differ sufficiently, we can automatically 
detect device placement. In previous 

work, we showed that such recognition 
is possible using the acceleration signal 
alone.6 We were able to detect different 
on-body placement for torso, hand, leg, 
and head by relying on the fact that these 
parts all move with different frequency 
and along different distinct axes.

Leonard Grokop and his colleagues 
pursued a different approach to loca-
tion recognition by using a fusion of 
 acceleration, proximity, and light sen-
sors to jointly recognize simple activities 
and on-body locations.11 Thus, walking 
with the sensor in a pocket is a separate 
class from walking and having the sen-
sor in the hand, reflecting the fact that 
both are separate events in signal space. 
A disadvantage of this approach is the 
explosion of the state space.

Related research focuses on phone 
placement sensing. Jason Wiese and his 
colleagues extended the work to detect-
ing a phone’s on-body location under 
real-life scenarios by utilizing acceler-
ometer data and a capacitive sensor pro-
totype. They also explored where people 
usually wear phones to adjust priors on 
different locations.3 Emiliano Miluzzo 
and his colleagues presented the Discov-
ery system, which can detect whether a 

phone is in a pocket by utilizing audio 
with a multiround classifier method.12

Addressing Within-Body 
Displacements
Features tolerant to within-body dis-
placement of gyroscope and accel-
eration sensors4 can be derived by 
assuming a rigid body idealization. 
Neglecting deformation assumes the 
distance between any two given points 
to be constant regardless of the external 
forces exerted on the object in question.

As Figure 6 shows, a rigid body can 
move in two ways: through translation 
and through rotation:

•	During translation, all points in a 
rigid body move at exactly the same 
speed and acceleration. Thus, signals 
from accelerometers are location in-
variant. Because a translation per def-
inition contains no rotational compo-
nent, gyroscopes produce no signal. 

•	During rotation, each point in a rigid 
body moves with the same angular-
velocity and acceleration. The gyro-
scope signal is the same for all points 
within the body, but the acceleration 
signal is placement dependent. 

•	 In addition to the dynamic compo-
nents resulting from motion, acceler-
ometer signals contain a component 
related to gravity that’s effectively 
identical at all places on an object 
and is thus invariant to displacement 
within body parts. It does, however, 
depend on sensor orientation.

From these facts, we can draw three 
conclusions:

•	When motions are dominated either 
by translations or changes in orienta-
tion with respect to gravity, we can 
use acceleration features.

•	When motions are dominated by 
 rotations, we should avoid accelera-
tion features; gyroscopes provide 
 information that’s invariant to body 
part displacement.

•	When motions contain an equal 
amount of rotation and translation, 
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Figure 5. Classification results for audio from nine household and office appliances, 
showing the effect of sound dampening on accuracy. “Trained clean” refers to training 
with the phone being held in one’s hand without absorption through clothing. 
“Trained mixed” refers to training on data from different pockets. “Majority” implies a 
majority decision over all frames in a recording instance.
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we should still pick the gyro  features—
although we might lose some informa-
tion, we’ll retain the shift invariance.

Unfortunately, arbitrary combinations 
of rotations and translations with a 
varying vertical component are still 
likely to occur. Consequently, static 
optimization will have only a limited 
effect on a typical recognition applica-
tion’s displacement invariance. To han-
dle this, we need to choose the correct 
features dynamically, depending on the 
kind of motion being performed.

In previous work, we showed how to 
accomplish this kind of dynamic selec-
tion,4 using the ratio of the acceleration 
vector norm to the angular velocity vec-
tor norm to determine if a signal frame 
is dominated by translation or rotation. 
As described earlier, translations gener-
ate no gyro signal, so the more the ratio 
is tilted toward the acceleration norm, 
the more translation-dominated the sig-
nal frame.

When applying this method to the 
gym experiment, we picked the deci-
sion boundary to be 150 degrees per 
second. Above this boundary, we used 
gyro features and set the accelerom-
eter features to zero; below it, we dis-
carded the gyro features and used the 
accelerometer features only. We made 
this decision for every data point at 
a 100-Hz sampling rate. As Table 1 

shows, significant improvement can 
be achieved.

The standard practice for dealing with 
displacement is to take robust  aggregate 
features. However, in general, such fea-
tures only work for very simple recog-
nition tasks. For more complex tasks, 
they lead to a significant degradation 
in recognition performance and require 
larger training  datasets.7,8 Navid Amini 
and his colleagues used robust rotation 
features to compensate for displace-
ment while detecting a specific medi-
cal device’s on-body location.13 Kristof 
Van Laerhoven and colleagues trained 
recognition models to be adaptive to 
small placement issues. The classes were 
trained as user-dependent, under the as-
sumption that a particular displacement 
 happens more often with a specific user, 
one drawback being that this training 
 required direct user feedback.9

K. Forster and his colleagues and 
H. Sagha and his colleagues regarded 
displacement as a continuous track-
ing problem.14,15 The Sagha study also 
 detected anomalies in the recorded data 
that the inference algorithm should dis-
regard, but for their algorithm to work, 
it had to know the device’s initial exact 
position on the body.

Addressing Orientation Variations
Estimating a device’s orientation with re-
spect to a user’s body involves two distinct 

subproblems: vertical orientation (the an-
gle with respect to the gravity vector) and 
orientation in the horizontal plane.

As first proposed by David Mizell and 
his colleagues, vertical orientation can 
be estimated when the object experi-
ences no change in motion speed.16 In 
this case, the only acceleration registered 
by the sensor is the Earth’s gravity (9.81 
m/s2), and the direction of the measured 
acceleration vector defines the vertical 
plane. To identify signal segments with 
the above characteristics, the norm of 
the measured acceleration vector is used 
together with its variance. When vari-
ance of all axes tends toward 0 and the 
norm vector approaches 9.81 m/s2, the 
signal is very likely to be dominated by 
the vertical orientation component. In 
theory, this might not necessarily be 
true: the object could be freely falling 
(and therefore, lack a gravity compo-
nent) while experiencing a constant 
9.81 m/s2 along an arbitrary direction.

To derive the horizontal orientation 
of a body-worn accelerometer from a 
signal segment recorded while a user is 
walking, we have presented a method25 
based on the fact that, while walking, 
most variations in the acceleration sig-
nal’s horizontal component are likely to 
be parallel to the direction of motion. 
Thus, we project the signal into the 
plane perpendicular to the vertical grav-
ity vector (that is, the horizontal plane) 
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and apply principal  component analy-
sis to determine the direction in which 
the variation is greatest. To distinguish 
 between front and back, we consider the 
integral of the signal over time.

Other Approaches
Most other methods for dealing with 
orientation changes focus on us-
ing  orientation-robust features. For-
ster and colleagues describe how to 
track orientation and displacement 
changes over time, but they assume 
known  sensor positions at the begin-
ning.14  Ricardo Chavarriaga and his 

 colleagues17 propose a similar yet 
more elaborate  approach, an unsuper-
vised adaption method that can com-
pensate for small sensor displacements 
and orientation changes over time (this 
approach can’t handle large changes, 
such as a user taking out his mobile 
phone and putting it back in a differ-
ent orientation).

Surapa Thiemjarus and his colleagues 
defined device orientation as a classifi-
cation problem,18 implying that each 
different device orientation required its 
own training data. Oresti Banos and his 
colleagues presented a weighted sensor 

fusion-based approach,19 while Ming Ji-
ang and colleagues calculated a transfor-
mation matrix by using  Gram-Schmidt 
orthonormalization to eliminate the 
 sensor’s orientation  error and then 
 employing a low-pass filter with a cut-off 
frequency of 10 Hz to eliminate the main 
effect of the sensor’s misplacement.20

Additional dedicated work is in the 
area of modeling orientation variations 
in garment-integrated sensors.21,22 The 
research here focuses on exploiting gar-
ment properties to estimate orientation 
changes and displacement.

Detecting On-Body Placement
Up to now, we’ve merely sketched pos-
sible solutions and methods (space 
doesn’t permit a more detailed discus-
sion). To provide some deeper insight, 
we pick a specific example and detail it 
here—specifically, recognition of body 
part location—and by extending our 
own prior work,6 we describe how a 
recognition system looks in detail.

Different body parts vary in degrees of 
freedom and move in different patterns. 
We evaluated more than 35 features and 
found that six best capture those differ-
ences. The first three are standard devi-
ation, zero crossings, and mean of the 
norm of the acceleration vector minus 
the gravitational pull g0:

x y z g2 2 2
0+ + − .

The fourth is the sum of the norm of the 
differences in variance for the normal-
ized axes a1, a2, a3 divided by the vari-
ance of the vector norm

1 2
1 1i
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i j
j j i

n

a a
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= = <
∑ ∑ −var var
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The fifth is the number of peaks in the 
absolute value of the three axes derived 
using hill climbing with a threshold; the 
sixth is the median of these peaks.

We computed these features over a 
2.5-sec jumping window (overlapping 
1.25 sec); we then applied another six-
minute window on top of the already 
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Figure 7. Performance of particle filtering for the respective datasets over time. It can 
be seen that the system needs approximately two minutes to reach its peak accuracy.
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windowed features and fed them into 
a continuous hidden Markov model 
(HMM) with five hidden states.

We evaluated the system on five 
datasets:

•	Household work. We gathered six 
hours of real-life activities from a 
70-year-old housewife, a 50-year-old 
female office worker, and 28-year-
old male student.

•	Opportunity. The largest dataset re-
corded as part of the Opportunity EU 
project includes activities from every-
day living such as making a sandwich, 
pouring coffee, and eating. Two users 
repeated the setup five times.23

•	Drink and work. The drink and 
work dataset contains mostly sitting 
activities, such as working on a com-
puter and consuming food and drinks. 
In total, we studied six subjects with 
four repetitions each; one experimen-
tal run took around 30 to 40 minutes.

•	Bicycle repair. The last experimental 
setup included repair activities on a 
bike (attaching a tire, tightening screws, 
and so on) with six test subjects.24

•	Office Work. A set of simple office 
activates such as typing, photocopy-
ing, or participating in a meeting.

The maximum accuracy achieved 
for the six-minute windows was 
82   percent, with roughly 80 percent 
at five minutes, as depicted in Figure 7.  
Because we recorded unconstrained 
real-life activities for our experiments, 
the dataset contained many segments 
that had no significant motions char-
acteristic of body parts that we could 
use for classification, which explains 
the relatively low recognition rate. If 
we took just walking segments into 
account, for example, the recognition 
rates improve to 94 percent.6 

To improve our on-body placement 
recognition work, we tried several fil-
tering approaches. As a majority win-
dow is too crude to filter out unchar-
acteristic movements, we applied a 
sequential Monte Carlo method, also 
called a  particle filter; the basic method 

for the HMM recognition remained the 
same. When we applied the particle 
filtering, we could reduce the sliding 
window for each individual HMM to 
45 seconds. We input these 45-second 
“sliding window” HMM classifica-
tions as observations into a particle fil-
ter. To our knowledge, particle  filtering 
hasn’t been applied to this type of ac-
tivity-sensing problem. Figure 8 gives 
an overview of all methods used.

To test our filter design, we ran-
domly (uniformly) picked 100 10-min-
ute segments from the datasets (there 
were duplicates), did feature extraction 
and HMM classification, and then fed 

them into the particle filter. Afterward, 
we evaluated what percent of the 100 
filtered placements we detected cor-
rectly. Figure 7 shows the results for 
the different datasets. As can be seen, 
the office work scenario performed 
best (using gyroscope and accelerom-
eter), and the opportunity dataset was 
second  (gyroscope and accelerometer). 
House work started off quickly (accel 
+ gyro), but didn’t achieve the average 
90 percent accuracy and had the most 
 variance from one filtered classifica-
tion to the other. For all datasets, we 
reached a recognition rate of more than 
90  percent after 2 to 4 minutes.
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TAble 2 
On-body recognition rates (%).

Head Wrist Torso Front pocket Back pocket

Head 74.0 1.0 12.5 0 12.5

Wrist 0 87.2 6.4 2.6 3.8

Torso 7.1 5.9 84.7 0 2.4

Front pocket 0 2.1 14.9 37.2 45.7

back pocket 0 2.0 11.9 2.0 84.2



10 PERVASIVE computing www.computer.org/pervasive

WeARABle COmPUting

The recognition for body parts with 
less movement didn’t perform that well 
(head and torso), as can be seen from 
the confusion matrices in Table 2 and 
Figure 9a. The classification was worse 
for the HMMs alone, but it can be sig-
nificantly improved by applying the 
particle filter (Figure 9b).

W e discussed many is-
sues here with respect 
to smartphones and 
mobile appliances, but 

our points are also relevant for other 
types of wearables—in particular, the 
body part shifts and rotations that are 
well-known problems for smart tex-
tiles, which are never firmly fixed to 
the body (sleeves may be rolled up or 
sweatshirts carried around the hip or 
in a backpack). 
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Figure 9. On-body location recognition using HMMs and particle filter smoothing: (a) Mean and standard deviation of the 
time it takes before the particle filter recognizes the correct placement using 100 segments between 10 and 20 minutes, 
uniformly randomized for the opportunity dataset. (b) scatter plot depicting HMM performance with and without particle 
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(around 59 percent correct) and achieving a 78 percent particle filter with 40 particles.



octobEr–dEcEmbEr 2014 PERVASIVE computing 11

 17. R. Chavarriaga, H. Bayati, and J. del 
Millan, “Unsupervised Adaptation for 
Acceleration-Based Activity Recognition: 
Robustness to Sensor Displacement and 
Rotation,” Personal and Ubiquitous Com-
puting, vol. 17, no. 3, 2013, pp. 479–490.

 18. S. Thiemjarus, “A Device-Orientation 
Independent Method for Activity Rec-
ognition,” Proc. Body Sensor Networks, 
2010, pp. 19–23.

 19. O. Banos et al., “On the Use of Sensor 
Fusion to Reduce the Impact of Rota-
tional and Additive Noise in Human 
Activity Recognition,” Sensors J., vol. 12, 
no. 6, 2012, pp. 839–854.

 20. M. Jiang et al., “A Method to Deal with 
Installation Errors of Wearable Acceler-
ometers for Human Activity Recognition,” 
Physiological Measurement, vol. 32, no. 3, 
2011, p. 347.

 21. H. Holger Harms, O. Amft, and G 
Troster, “Modeling and Simulation of 
Sensor Orientation Errors in Garments,” 
Proc. BSN, 2009, pp. 20–26.

 22. G. Gioberto and L.E. Dunne, “Gar-
ment Positioning and Drift in Garment-
Integrated Wearable Sensing,” Proc. 
Int’l Symp. Wearable Computers, 2012, 
pp. 64–71.

 23. D. Roggen et al., “Opportunity: Towards 
Opportunistic Activity and Context Rec-
ognition Systems,” Proc. Int’l Symp. World 
of Wireless, Mobile and Multimedia Net-
works (WowMoM), 2009, pp. 1–6.

 24. G. Ogris et al., “Continuous Activity Recog-
nition in a Maintenance Scenario: Combin-
ing Motion Sensors and  Ultrasonic Hands 
Tracking,” Pattern Analysis Applications J., 
vol. 15, no. 1, 2012, pp. 87–111.

 25. K. Kunze et al., “Which Way Am I Facing: 
Inferring Horizontal Device Orientation 
from an Accelerometer Signal,” Proc. Int’l 
Symp. Wearable Computers (ISWC 09), 
2009, pp. 149–150.

Selected cS articles and columns  
are also available for free at  
http://computingNow.computer.org.

the AuTHORs
Kai Kunze is a research assistant professor in the Intelligent media Processing 
Group at osaka Prefecture University. His research includes the exploration of 
knowledge acquisition tasks, combining computer vision and other embedded 
sensing approaches with a focus on reading activities and learning behavior. 
Kunze received a Phd from University Passau, Germany. contact him at kai.
kunze@gmail.com.

Paul Lukowicz is a professor of artificial intelligence at the technical University 
of Kaiserslautern Germany, and scientific director for embedded intelligence at 
the German research center for Artificial Intelligence (dFKI). His research in-
terests are in wearable systems, ubiquitous and crowdsourced sensing, activity 
and context recognition, sociotechnical systems, and self-organization. Luko-
wicz received a Phd in computer science from the University of Karlsruhe. He 
is a member of the editorial board of the Hindawi Advances in Human Computer 
Interaction and IEEE Journal of Biomedical and Health Informatics. contact him at 
paul.lukowicz@dfki.de.


