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ABSTRACT

This paper presents a human-plant interaction system that helps
observe daily mental fatigue levels by enabling the synchronisation
of human eye blink data with plant health. We want to facilitate
introspection on our subjective well-being by leveraging plants’
organic growth as a reflective medium. Based on users’ daily fatigue
levels assessed from their eye blink data, the system controls the
quality and intensity of the grow LED installed on the sensor-
augmented plant. Another LED placed in front of the planter also
displays the plant’s health, combining light intensity and daily
average eye blink frequency. We aim to design a novel means to
connect human biosignals with plant health and introduce human-
plant interaction as a reflection on subjective well-being.

CCS CONCEPTS

+« Human-centered computing — Systems and tools for inter-
action design.
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1 INTRODUCTION

Due to the prolonged social distancing measures and fear of the
COVID-19, people are increasingly spending a significant amount
of time at home during the pandemic. This imposed restriction has
inevitably deprived many of one’s agency, putting further strain on
mental health. As a way to combat growing concerns about deteri-
orating mental health, we present a novel interaction system that
supports reflection on one’s subjective well-being while offering
an opportunity to reconnect with nature at home through plants.
The therapeutic aspect of nature, including houseplants, has
been well researched [12, 15, 18]. However, there has been little
research into employing plants as a support medium for improving
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Figure 1: Browser-based eye blink detection using Tensor-
Flow’s face landmarks detection library (top). The aug-
mented plant with a grow LED at the top of the planter and
plant health LED indicator in front of the planter (bottom)

subjective well-being in the HCI field. Some works have attempted
to facilitate healthy habits using plants as motifs [3, 8, 14]. Kaner
et al., for instance, visualises an artificial plant on a water bottle to
encourage users to drink more water [8]. While it is a rare example
that incorporates a plant to promote well-being, a plant remains a
motif rather than an interaction medium in this case.

There are also instances which incorporate physical plants as
information displays [5-7]. Yet, they are mostly interested in plant
movements for notifications or treating each plant as pixels in
displays. Only a few have considered incorporating personal digital
data into human-plant interaction [10, 11]. However, to the best of
our knowledge, we are not aware of other attempts to synchronise
human biosignals with plants.

The contributions of this work are as follows:

e Implementing an initial prototype that connects human
biosignals with plant health to synchronise eye blink data
(i.e. fatigue levels) from a user with lights to increase/inhibit
plant growth.
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e Introducing and discussing human-plant interaction as a
reflective medium for subjective well-being.

2 APPROACH

One important characteristic of the human mind is that it has sig-
nificant fluctuations in productivity and capacity. Our mind has
ebb and flow and is affected by various factors, some of which we
do not even realise. For example, when it comes to judging one’s
fatigue levels, people seem to be quite unreliable [22]. There are a
variety of technologies that can be used to assist fatigue assessment
by measuring biosignals [2, 17, 21, 22]; however, the examples that
successfully integrate such technologies into human-plant interac-
tion systems are close to none. Thus, we devised a human-plant
interaction system to synchronise human eye blink data (as a proxy
of fatigue levels) with plant health. To assist people with effectively
assessing their fatigue levels, we link users’ cognitive state to plant
attributes in their environment by providing a more visible repre-
sentation of the fluctuations in productivity and capacity. We focus
on assessing fatigue and mapping fatigue levels to plant health in
this prototype.

3 PROTOTYPE DESIGN

The key parts of the system involve effectively measuring mental
fatigue levels and visualising them with plants to create a sense
of human-plant synchronisation. To implement these parts, a re-
liable biosignal sensing method and intuitive visual feedback are
necessary. We used a browser-based eye blink data collection to
assess human fatigue levels and use the data to control the grow
LED installed on top of a plant. We will elaborate on the setup and
interaction design in the next section.

3.1 Setup

The system is comprised of following components: 1) an augmented
plant with sensors (light, humidity and temperature sensors) and
actuators for monitoring and visualising plant health, 2) a grow light
(LED) to regulate plant growth, 3) and the software for computing
human fatigue levels based on daily eye blink data and sending it to
the augmented plant. An ivy plant was chosen for this setup since
it is well suited for growing indoor and can develop a discernible
growth within a relatively short period time (e.g. two leaves per
week [20]).

3.2 Measuring Mental Fatigue Levels

For measuring mental fatigue levels, we built a browser-based eye
blink detection system using face landmarks detection library from
TensorFlow.js. Since the library does not compute eye blinks, we
applied the algorithm proposed by Soukupova and Cech [19]. The
algorithm utilises a metric called the eye aspect ratio. It computes
the absolute distance between each set of vertical eye landmarks
(the difference between P2 and P6, P3 and P5 in the figure 1) and
divide the sum of each vertical distance by the multiple of 2 of the
absolute distance of horizontal eye landmarks (P1 and P4 in the
same figure). The equation for the eye aspect ratio is as follows:

[lp2 — p6l| + |1p3 — p5|

EAR =
2|lp1 - p4l|
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Figure 2: Implementation of eye blink ratio based blink de-
tection (based on Soukupova et al.[19])

3.3 Synchronising Fatigue Levels with Plant
Health

To communicate mental fatigue levels with a plant, we employed a
grow LED in two colours: 1) purple (the combination of blue and red)
for no or minimal fatigue, and 2) blue for increased fatigue levels.
The rationale for choosing these colours is that they are known to
influence plant growth; purple facilitates plant growth [13, 16], and
blue inhibits it [4, 9]. In other words, an optimal cognitive status
is linked to facilitating plant growth, and a deteriorating cognitive
status is linked to inhibiting plant growth. Upon determining the
colour of the grow LED, the threshold was set to 15 blinks per
minute since it has been reported as normal spontaneous blink
rate [1, 17]. If the average blink rate per minute of a user is higher
than 15 (indicating fatigue), the LED turns to blue (inhibiting plant
growth). If the blink rate is equal or below the blink rate threshold,
the LED turns to purple (promoting plant growth). The blink rate
threshold can be adapted for individual users in future work.

As for determining plant health, we employed pseudo metrics to
visualise changes in daily plant health observable to human eyes.
In addition to representing human fatigue levels, the two grow LED
also influence plant health in this prototype. Based on the grow
LED intensity read from the light sensor and eye blink frequency
thresholds, the augmented plant visualises its health status in green,
yellow, and red, indicating good health, diminishing health, and
need for attention respectively.

In short, by showing the direct link between human fatigue
levels and plant health, the system offers a means to reflect on
one’s subjective well-being and aims to show how plants and hu-
man well-being can improve together as a result of human-plant
synchronisation.

4 CONCLUSION & FUTURE WORK

In this paper, we introduced the concept of human-plant synchro-
nisation and how an interaction system supported by this concept
can visualise subjective well-being. This research delved into ap-
proaches that enhance a symbiotic relationship between humans
and plants through visualising the connection between human
biosignals (i.e. eye blink data) and plant health. Future work will
involve an in-the-wild evaluation study to observe the changes in
both human subjective well-being and plant growth over the long
period of time. It will also evaluate how a degree of human-plant
synchronisation will affect human subjective well-being.
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