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ABSTRACT
We demonstrate how information about eye blink frequency
and head motion patterns derived from Google Glass sensors
can be used to distinguish different types of high level ac-
tivities. While it is well known that eye blink frequency is
correlated with user activity, our aim is to show that (1) eye
blink frequency data from an unobtrusive, commercial plat-
form which is not a dedicated eye tracker is good enough to
be useful and (2) that adding head motion patterns informa-
tion significantly improves the recognition rates. The method
is evaluated on a data set from an experiment containing five
activity classes (reading, talking, watching TV, mathemati-
cal problem solving, and sawing) of eight participants show-
ing 67% recognition accuracy for eye blinking only and 82%
when extended with head motion patterns.
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INTRODUCTION
For a long time sensors mounted on the user’s head were
seen as too obtrusive for activity recognition in every day life
scenarios (as opposed to for example industrial applications
where sensors could easily be integrated in e.g. helmets). The
Google Glass platform (and a score of emerging similar de-
vices) has clearly undermined this assumption. It has been
designed for all day use in every day situations and, over the
last year, has been used in this way by thousands of people.

Google Glass has four sensors that could potentially be used
for activity recognition: a camera, a microphone, an inertial
measurement unit (IMU), and an infrared proximity sensor
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Figure 1. Infrared proximity sensor built into Google Glass

facing towards the users’ eye that can be used for blink de-
tection. In this paper we focus on the later two (IMU and
blink detection) which we argue to be most characteristic to
the Google Glass (and similar) platform. For the microphone
the position on the head makes little difference (except possi-
bly for recognizing the user speaking). There is also a lot of
existing work on head mounted cameras. On the other hand
combining eye blink frequency and head motion patterns for
activity recognition in every day scenarios has so far not been
studied in much detail.

Paper Contributions
From the above considerations this paper investigates how a
combination of eye blink detection and head motion pattern
analysis can be used to recognize complex high level human
activities. Overall the aim is not to present a ”ready for use”
method for the recognition of specific applications. Instead,
it is to explore the limits of how much information can be
extracted from a very simple blink detector provided by the
Google Glass platform and how important additional infor-
mation about head motion is. Thus on a practical level one
contribution is to discuss the blink recognition with Google
Glass. While Google provides an undocumented API to de-
tect eye blinks as a control method for the system, we argue
that a detailed description and evaluation of long term statis-
tical analysis of blinking frequencies provided in this paper
is a valuable contribution that could also benefit researchers
using other similar setups.

On a conceptual level the main contribution is to show that
the proposed methodology has the potential to contribute to
the recognition of activities that are difficult to distinguish
using other, unobtrusive wearable sensors. Specifically, we
consider reading, talking (having a conversation), watching
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Figure 2. Proximity sensor value and ground truth of 2 participants.

a video, solving a mathematical problem and sawing. Dis-
tinguishing between these activities involves not only recog-
nizing physical actions (that can easily be captured using for
example on body motion sensors) but also a cognitive com-
ponent which is what we hypothesize eye blinking frequency
and head motion correlate with.

We evaluate our method on a data set containing eight par-
ticipants demonstrating an average classification accuracy of
67% using blink features only and 82% using blink and mo-
tion features.

Related Work
There is a large corpus of work to recognize human activities.
A variety of physical activities can be recognized using body-
mounted sensors [5]. On the other hand, some researchers
focus on our cognitive activities. Bentivoglio et al. have stud-
ied the relation between sitting activities and blink patterns
[3]. They described that the blink rate changes when partic-
ipants were reading, talking and resting. Acosta et al. have
presented that working with computers causes a reduction of
blink [1]. Haak et al. have described that emotion, especially
stress, effects blink frequency [9]. Therefore, blink pattern
should be one of the important features to recognize our ac-
tivities. Some researchers have applied an image processing
method [6] and an eye tracking approach [4] to detect blinks.

As far as we know, we are the first to use a simple proximity
sensor embedded in a commercial wearable computing sys-
tem for activity recognition and to combine it with head mo-
tion patterns.

APPROACH
We believe that blink patterns can give a lot of insights about
the user’s mental state (drowsiness etc.) and the user’s ac-
tivity. To show this we use an infrared proximity sensor on
Google Glass (see Figure 1). It monitors the distance between
the Google Glass and the eye. Figure 2 shows the raw values
of the sensor. While the main function of this sensor is to
detect if the user wears the device, when the user blinks, a
peak value appears due to the eye lid and eyelashes move-
ment. Our algorithm is based on two stages. The first stage
is the pre-processing stage of the raw sensor signal. The pre-
processing stage extracts the time of blinks. We validate the
pre-processing results with ground truth blink information.
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Figure 3. Blink detection by calculating peak value.

Secondly, the main part of our algorithm calculates features
based on the detected blinks. Getting raw data of infrared
proximity sensor on Google Glass is not provided in an of-
ficial way. We rooted (customized) our Glass on the basis
of Glass hacking tutorial [7] and installed our own logging
application [8] for the experiment.

Blink detection
During pre-processing blinks are detected based on the raw
infrared proximity sensor signal. We move a sliding win-
dow on the sensor data stream and monitor whether the cen-
ter point of each window is a peak or not according to the
following definition. We calculate the distance from one sen-
sor value of the center point in the window (p5 in Figure 3)
to the average value of other points (p1, p2, p3, p7, p8 and
p9). The preceding and subsequent points of the center (p4
and p6) are excluded from the average calculation because
their sensor values are often affected by the center point. If
the distance is larger than a threshold ranging from 3.0 - 7.0
we define the center point as a blink. Because the shape of
the face and eye location vary, the best threshold for the peak
detection varies for each user. Figure 2 with the same scale
for each sub-graphic also demonstrates different signal vari-
ations for different users. We calculate the best threshold (in
0.1 steps ranging from 3.0 to 7.0) by evaluating the accuracy
based on the ground truth information. This approach can be
applied only in off-line evaluation. In on-line usage, we need
a few seconds for calibration before detection. During the
calibration term, Glass urges the user to blink as matching
some timing. We get sensor values and actual blink timing
from calibration and evaluate the best threshold.

Blink frequency based activity recognition
As an output of our pre-processing step we extract the times-
tamps of blinks and compute a three-dimensional feature vec-
tor. One is the mean blink frequency which describes the
number of blinks during a period divided by the length of a
period. Two other features are based on the distribution of
blinks. Graphically, this can be understood as the histogram
of the blink frequency. Figure 5 shows five histograms with
a period of 5 minutes. The x-axis describes the mean blink
frequency (0.0 - 1.0 Hz) and the y-axis describes the blink
counts of each frequency. The number of specified bins per
histogram is 20 having a resolution of 0.05 Hz. The frequency
value is calculated as inverse value of the interval between
two blinks. The second and third features are defined as the
x-center of mass and the y-center of mass of the histogram.
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Figure 4. Video based ground truth image excerpts of the experiment scenes containing watching (a), reading (b), solving (c), sawing (d) and talking (e).
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Figure 5. Overview of blink frequency during 5 minutes activity, watching (a), reading (b), solving (c), sawing (d) and talking (e).

Table 1. Dataset overview from ground truth
Participant 1 2 3 4 5 6 7 8 Avg.
Total blink counts 1 230 161 420 313 381 309 207 414 304
Min frequency (Hz) 0.02 0.02 0.03 0.06 0.02 0.04 0.02 0.02 0.03
Max frequency (Hz) 0.96 0.96 0.99 0.99 0.99 0.98 0.99 0.99 0.98
1 The total blink counts through all activities for each participant

Combination of blink frequency and head motion
The advantage to use Google Glass is that we can easily get
and combine several sensor signals for our activity recogni-
tion task. The user’s head motion varies for different activi-
ties. We calculate the degree of head motion by calculating
the averaged variance of the three-dimensional accelerometer
sensor signal which defines our simple motion based feature.
In the approach combining blink patterns and head motion we
use the following four features: variance value of accelerom-
eter, the mean value of blink frequency and the x-center and
y-center of mass value of blink frequency histogram. We
combine these features and compare the impact on activity
recognition accuracy.

EVALUATION AND RESULTS
We recruited eight participants to perform five activities each
lasting five minutes while wearing the Google Glass. All of
the participants were male. Five of them had unaided vision
and three (2, 3, 4) were using contact lenses. We defined the
activities as watching a movie on a Laptop, reading a book
on an ebook reader, solving mathematical problems on paper
(entrance examination for graduate school), sawing a card-
board and talking with another person. We intended solving
as an example of mental tasks and sawing as a physical task.
The location and light condition was fixed for all experiment
participants. The display of Google Glass was always turned
off and didn’t attract the subject’s attention during the exper-
iment. We collected values of the infrared proximity sensor
and the accelerometer. Each activity was recorded separately.
Feature extraction and classification was applied to the data
containing a single activity. We also recorded the experiment
scene video to get ground truth. Figure 4 shows the ground
truth information of five different users performing five dif-

Table 2. Pre-processing blink detection results
Participant 1 2 3 4 5 6 7 8 Avg.
Accuracy (%) 96 85 89 99 97 93 94 89 93
Precision (%) 92 48 76 98 87 80 71 86 80
Recall (%) 64 71 72 98 89 86 72 74 78

Table 3. Activity recognition classification results
Participant 1 2 3 4 5 6 7 8 Avg.
Method 1 (%) 1 70 52 82 76 70 54 69 64 67
Method 2 (%) 2 75 56 66 83 57 56 58 50 63
Method 3 (%) 3 92 81 87 91 82 74 74 74 82

1 Blink frequency based recognition.
2 Head motion (accelerometer) based recognition.
3 Combination of blink frequency and head motion by fusing

infrared proximity sensor data and accelerometer data.

ferent activities. After the experiments we used the video as
the ground truth information for activity classes and primarily
for labeling every participant’s blink timing by using Label-
ing Tool [2] for pre-processing step evaluation.

At the recognition part we defined the sliding window size
as 60 seconds with a step size of 10 seconds and calculated
the previously defined features for each window. The win-
dow size should be longer than max interval in dataset. The
longest blink interval through all participants was 50 seconds
(see Table 1 for details). We trained a user dependent J48 de-
cision tree classifier and evaluated the classification accuracy
by confusion matrices based on 10-fold cross validation.

Blink detection
Figure 5 exemplarily shows for one participant five different
histograms based on the blink frequency distribution during
five minutes for each activity. We evaluated the blink detec-
tion according to our ground truth and achieved an average
accuracy over all participants of 93% ranging from 85% to
99% (see Table 2 for details). Each participant’s blink detec-
tion accuracies are based on the average value of 5 activities.

Activity recognition
Solely based on blink frequency features and an experimental
complexity of eight participants and five activity classes we
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Figure 6. Confusion matrices of all participants.

achieved an average classification accuracy of 67% (see Ta-
ble 3 for an overview of all participants) individually ranging
from 52% to 82%. Solely motion feature based recognition
underperformed with 63% classification accuracy. When we
combine the blink frequency based features with the motion
based feature we achieve an average classification accuracy of
82% (increased by 15% compared to blink frequency based
recognition). Figure 6 shows the individual confusion matrix
results of eight experiment participants. These confusion ma-
trices show correctly classified instances on the diagonal and
wrongly classified instances in other areas.

Figure 7 shows one participant’s feature plot. Talking and
watching is easily distinguished by other activities. Yet it is
difficult to classify sawing, reading and solving by only blink
patterns. Head motion feature helps to distinguish especially
those classes. Conversely, reading and watching can not be
distinguished easily only by head motion. The dispersion of
head motion during solving is larger than other activities be-
cause solving contains 2 statuses, concentrating to write the
answer and looking at the assignment on another paper.

The training duration per class and per person was only five
minutes long. In future the input of the correct activity might
be given during daily usage of Google Glass learning con-
stantly from the user’s activities and improving the classifi-
cation constantly. We evaluated ten minutes of recordings of
six participants (1, 4, 5, 6, 7 and 8) again. The classification
based on blink frequency improved by 7% an in combination
with the motion feature improved by 9% compared to the five
minute long recording.

CONCLUSION AND FUTURE WORK
We have shown how the infrared proximity sensor from the
standard Google Glass can be used to acquire user eye blink
statistics and how such statistics can be combined with head
motion pattern information for the recognition of complex
high level activities. The overall accuracy of 82% for the se-
lected five activity classes may still not be enough for many
practical applications. However, it clearly indicates that these
sensors contain valuable information which could comple-
ment other, more widely used sensors such as as sound, vi-
sion, and motion.

A possible improvement of the system itself includes a se-
lection of valid infrared proximity sensor signal segments by

Figure 7. Feature representation of one person and five different activity
classes are shown. Each dot represents a data segment of 60 seconds.

filtering out parts with significant movement of the user. For
further improvement in this method future work will focus on
a better understanding of the optimal test segment size and
of the changes in blink frequency in different conditions (de-
pending on air humidity etc).
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