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The use of wearable sensor technology opens up exciting avenues for both art and HCI research, providing
new ways to explore the invisible link between audience and performer. To be effective, such work requires
close collaboration between performers and researchers. In this article, we report on the co-design process
and research insights from our work integrating physiological sensing and live performance.We explore the
connection between the audience’s physiological data and their experience during the performance, analyzing
a multi-modal dataset collected from 98 audience members. We identify notable moments based on HRV
and EDA, and show how the audience’s physiological responses can be linked to the choreography. The
longitudinal changes in HRV features suggest a strong connection to the choreographer’s intended narrative
arc, while EDA features appear to correspond with short-term audience responses to dramatic moments. We
discuss the physiological phenomena and implications for designing feedback systems and interdisciplinary
collaborations.
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1 INTRODUCTION

The most essential component in all performances, be it dance, music, or theater, is perhaps the
live interplay between the performers and their audience. Even when following a script, or well-
defined choreography, each rendition is different, partly due to audience reactions. Performers
often describe it as an invisible link between them and the audience, involving the audience in
co-creating art [12, 72].

Inspired by emerging concepts and technologies, performers have attempted to apply embodied
interactions to enhance the notion of being connected. Within the HCI community, there is an es-
tablished history of art-related research as well as a growing interest in collaborating with artists
for interactive performances [8]. Many works investigate potential uses of sensing technologies to
realize performers’ creative visions, including tracking performer movements [46, 54], audience
text messages [21], and performer and audience’s physiological data [25, 38, 68, 92, 107]. More-
over, unobtrusive sensing technologies can help researchers and practitioners to understand the
audience’s experience in the wild.
A conventional way to investigate the subjective experience of a performance is measuring

audience participation and engagement by using a combination of observations during the per-
formance and the collection of audience responses afterwards [15]. This type of approaches is,
however, are highly subjective and surveys collection can be unreliable depending on the audi-
ence’s interest and difficult to deploy because some audience members might not want to answer
and some may think they are marketing-related [54]. A complementary approach is to directly
measure physiological responses of the audience using environmental or wearable sensors. The
idea is to use unconsciously generated physiological data, such as changes in the heart rate (HR)
or perspiration, as proxy measures for emotional state [55, 100, 107]. Yet, sensors might become a
distraction from the performance and interpretation of the data is still open to discussion.
Our research reported in this article presents a path to explore live audience experience that

grew out of a collaboration between researchers and performers. This article describes our process
of sensing the audience’s experience during a dance performance by capturing physiological data
(electrodermal activity (EDA) and heart rate variability (HRV)) to enable the co-creation of
the performance environment. A body of research have used these data and derived EDA and HRV
features as measures of emotional affect across a variety of domains [3, 4, 14, 16, 22, 37, 96].Most
of the sensors we used for data collection are worn on the wrist, and were custom-built to reduce
audience distraction.
While previous work have often explored audience experience by linking sensor data to con-

cepts like engagement or attitude [55, 94, 101]. In contrast, our work explores the link between
the audience’s physiology and the choreography of the dance. Choreography encompasses com-
positional design and syntactical abstractions of movement to convey an underlying meaning or
idea [2], and several works have used choreographic events to predict emotional arousal measured
by continuous self-reporting [87]. By comparing physiological data to the choreographic structure,
we investigate the complex interplay between planned live performance and audience experience.
Additionally, we reflect on the overall interactive system design and how this might contribute
toward embodied performance. We also summarize the lessons learned for both HCI researchers
and performance artists.
Research Contribution: The main contributions of our work are the following:

(1) A systematic overview of our iterative co-design process: This article reports a three-
year-long co-design process involving a modern dance ensemble, a choreographer and mem-
bers of a contemporary theater that worked hand-in-hand with researchers to design a con-
ceptual dance performance. Our process presents an interesting method to balance artistic
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Fig. 1. A Scene of the dance performance, recording physiological signals from the audience.

and research interests during the collaboration.We report the process of integrating sensor
feedback into the choreography, which contributed to creating both a novel artistic expe-
rience using audience physiological data to affect staging elements and an environmental
method for researchers to analyze data collection in the wild, see Figure 1.

(2) Linking data and art to explore insights into audience experience: We explore links
between audience physiology and choreography. We present our investigation into HR-
derived features (specifically HRV features) and EDA features.We investigate the audience’s
experience from physiological, artistic, and subjective angles, linking HRV and EDA features
during the performance. We report an exploratory interpretation of these observations and
how they connect to choreography, audience subjective feedback, and interviews with the
dancers.Our results reveal similar dynamic changes of physiology among different audience
members, supporting the idea that choreographic design might be used to trigger expected
physiological responses. Our findings as well as the general approach provide a promising
template for future work on interactive performance.

(3) Technical contribution for recording in thewild:We describe a customwearable sensor
system that records motion, blood volume pulse (BVP), and EDA. The system can collect,
store, and stream data frommultiple participants simultaneously using wearable wristbands.
This provides researchers a reproducible method to set up multi-modal physiology sensing
systems in the wild.

(4) An open source multi-modal dataset. Finally, we contribute a freely-available, multi-
person, multi-modal dataset (BVP, EDA, wrist acceleration and angular velocity) from 98
participants in total over three performances (duration about one hour per performance).
The dataset (in total ca. 2.5 GB without video) together with the sample code for analysis is
available for researchers under this link: http://bit.ly/audiencebiodata. This will give other
researchers the chance to explore additional facets of the work beyond those covered in the
current article.

The remainderof this article is structured as follows: Section 2 provides background information
on how to utilize physiological sensing to explore live audiences and briefly introduces the sens-
ing system that we used in our performances where audience physiological data were collected.
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Section 3 describes the co-design process and iterative design considerations. Section 4 describes
the prototype implementation and choreography for the final performance. Sections 5 reports the
analysis and results of the audience’s physiological data and their qualitative feedback. Sections 6
reports the methodology and results of analyzing the dance team’s qualitative feedback. Sections 7
discusses the results and implications for interactive feedback design and co-design process.
Sections 8 concludes the article.

2 RELATEDWORK

Our research follows the broader research agenda of augmented humans, focusing on the overall
experience of integrated feedback loops [23, 30, 36, 64, 105] rather than interactions between hu-
mans and computers. To set the scene for related work, we summarize research on feedback loops
in interactive performances, physiological sensing, and sensing live audiences.

2.1 Interactive Performances

Early work in cybernetics inspired many art performances to incorporate physiological feedback
in some way. Khut et al. identified the implications of physiological feedback for interactive art
from the psychophysiology and presented a starting point for an exploration of participant-centred
physiological feedback artworks [51]. Höök coined “Affective Loop Experiences” setting a research
agenda for “bodily persuasion” [40]. She further introduced the so-called “Somaesthetic Appreci-
ation” design concept, which means a correspondence by feedback and interactions that follow
physiological rhythms. Our work takes these concepts as a basis, applying and extending them
to a larger audience exploring bodily rhythms in the wild [41]. Collaboration between dancers
and researchers is a common practice in interactive performances. During a co-creation process,
researchers can benefit from artistic creativity to stretch the emerging technologies in unforeseen
ways, a test-bed for embedding research content publicly [8]. The HCI community has investi-
gated different approaches to designing for complex real-world experiences like those found in
the performing arts [45, 73]. Dance in particular has been used to explore the use of technology
to enhance aesthetic and affective expression. A common approach is to develop interactive ele-
ments that might be controlled or influenced by the performers [24, 31, 46, 54, 56], for example,
incorporating changes in staging elements that are triggered by dancers’ movements. An alterna-
tive approach is for interactions to be induced by the audience. For example, gauging audience
reactions through text messages [21, 60], movements [63], or physiological data [38, 61, 68, 107].

Our study is based on an interactive dance performance where researchers and dancers collabo-
rate to explore interactions through physiological sensing technology. This collaboration provides
researchers and dancers an opportunity to accomplish novel dance performances and understand
live audience experience in the wild. In the performances where we collected the dataset for this
article, physiological feedback from the audience was used to trigger changes of stage elements.
In a previous article, we described our design concept of streaming the physiological data (HR
and EDA) in real time and integrating this data to staging elements, such as projected visualiza-
tions [88]. We did not investigate the collected data in our previous article because we considered
the artistic aspects and concept design as the main contribution. In this article, we focus on the
exploration of the dataset collected to get deeper insights into live audience responses in the wild
and reflect on the long-term collaboration between HCI researchers and dancers.

2.2 Physiological Sensing

Related to the concepts of computational social science and social neuroscience, there is a lot
of work expanding sensing beyond the individual and exploring the relationship between social
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experiences and physiological data [18, 57]. Some approaches used physical signals, such as loca-
tion or movement data [29] and computer vision analysis, to detect facial landmarks, expressions,
or postures [6]. The development of wearable sensing technology [34, 50] provided researchers
possibilities to use internal signals associated with the involuntarily activated autonomic ner-

vous system (ANS).
Emotions that humans experience while interacting with their environment are associated with

varying degrees of physiological arousal where ANS plays a crucial role [5, 58]. ANS is mediated
by two branches: (1) the sympathetic nervous system (SNS), and (2) the parasympathetic ner-

vous system (PSNS) [59]. Parasympathetic nerves can exert their effect more rapidly (<1 s) com-
pared to sympathetic nerves (<5 s) and mediate sudden large changes in HR [1, 27, 65]. Emotional
states associated with ANS responses can be inferred using physiological data like Electrocardio-
graphy (ECG), EDA, and BVP [13, 78]. In our study, we used BVP and EDA, which are described
below.
BVP is a pulse-based method of calculating the cardiac cycle from which the HR can be in-

ferred [13]. HR and HRV are considered to result from ANS activities. The neurovisceral integra-
tion model describes HRV as the result of prefrontal cortex activities that affect modulation of the
PSNS and SNS nervous systems’ balance [93]. In other words, the neural circuitry that affects HRV
goes very deep into our brain and reflects higher level cognitive processes and emotional states.
Hence, HRV has been shown to be an indicator for reflecting emotions [16, 22].

EDA measures variations in skin conductance related to sweating and is a measure of the sym-
pathetic nervous system. It has been used for over a century [47] and remains one of the most
widespread tools for the measurement of autonomic nervous system responses in psychology and
psychotherapy [69, 95]. EDA is often used to assess emotional arousal [3, 14, 86, 96]. A number of
works explore the use of HR and EDA to gauge how groups of students respond to lectures and
academic life [28, 33]. Sano et al. recorded mobile phone data, acceleration, and EDA (both wrist-
based) of students during everyday university activities [77]. They were able to use this data to
predict academic performance, sleep habits, andmental wellbeing. Recently, Gao et al. presented a
viable system that detects students’ in-class engagement using multidimensional readings of EDA,
BVP, and other measurements like environmental sound [33]. Their choice of using both EDA and
BVP supports our concept of using these two signals to track audience engagement. Our study
differs from this prior work in that we do not seek to make explicit predictions, but rather present
a process through which the physiology and behavior of a live audience might be interpreted and
used.

2.3 Sensing Live Audience

Sensing live audiences has been explored using a variety of different sensor technologies includ-
ing EDA [55, 84, 101], HR /HRV [7, 82, 98], brain computer interfaces (BCI) [38], and body
movement [35, 90, 94] (see Table 1). Benford et al. [8] refer to the fusion of computing technol-
ogy and public artistic projects (including performance) as “in the wild” research, in the sense
of engaging “real” users with emerging technologies in real settings under conditions of actual
use, as opposed to more constrained lab environments. We adopted this terminology and classify
related work on audience sensing into either “lab” or “in the wild”, with the latter referring to
recordings during actual live theatrical performance. Table 1 provides on overview of this related
work classification. Compared to physiological methods, physical signals, like body movements,
facial expressions, and so on, are easier to record in the wild and thus feature prominently in the
literature [35, 90, 94]. Theodorou et al. extracted face, hand, and body movement data collected
from four contemporary dance performances together with two follow-up surveys on selected au-
dience members for ranking performance and reporting engagement [94]. By comparing motion
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Table 1. Recent Work About Sensing Live Audiences

Measurements Scenario
Audience

Size

Recording

Duration

Sensing

Technology
Method

GSR/EDA

Dance performance video [55] 49 11 minutes
Thought Technology
GSR fingerwraps

Lab

Films in theater/festival [84] 34 130 minutes Affectiva Q Sensor In the wild

Live performance [101] 15 28 minutes Customized sensor In the wild

HR/HRV

Dance performance [7] 24 63 minutes Bioharness 3 Sensor Lab

Piano performance
(live/recorded) [82]

37 70/50 minutes Win Human Recorder Lab

Dance performance [98] 101 35 minutes Empatica E4 Lab

BCI Live presentation [38] 11 35 minutes Neurosky Mindwave In the wild

Body Movement

Dance performance [94] 38 100 minutes Night vision cameras In the wild

Music concert [90] 49 8 songs
Passive optical motion
capture system

In the wild

Dance/talks/music [35] 75 79/42/22 minutes
Customized neck-worn
sensors

In the wild

EDA/HRV/ACC/
Angular Velocity

Our study 98 3 × 70 minutes Customized wrist band In the wild

We classified collection methods by referring to the “In the wild HCI research” definition by Benford et al. [8]. In our
study, we collected multi-modal data via our customized wrist band in real dance performance settings, while recent
works rarely sensed audience physiological data especially HR/HRV data in the wild.

data with survey results, they suggest that highest audience engagement corresponds to lowest
overall movement. Yet they found no systematic relationship between audience movement and
the dancers. Gedik et al. developed an approach to predict negative and positive experiences self-
reported by the audience using accelerometer and proximity sensor data [35]. They linked body
movements to memorable moments reported by audience members. In live music contexts, head
movements were faster during live concerts than album-playback concerts. Swarbrick et al. ex-
plained this as higher engagement [90]. Clearly, different types of performance can elicit very
different types of audience movement. In our work, we opted instead to use physiological instead
of physical recordings where the response is arguably more straightforward to interpret.
Previous work using EDA to track audiences includes Silveira et al.’s exploration of using EDA to

classify movie ratings [84]. For performances, Latulipe et al. used wearable EDA sensors to record
49 participants watching a video of a dance performance. Their results show strong correlations
between the EDA and self-reported data, which supports the validation of temporal EDA data as
reflection of audience engagement [55].
Similar to our work, Wang et al. recorded EDA from a live audience (15 participants for a

28-minute comedy performance) using wired electrodes on the palms [101]. From questionnaires’
and EDA data, they clustered audience members and identified a main cluster of 10 audience
members to represent the audience experience. They uncovered performance events (e.g., “bal-
loon pops”) as changes in EDA and posited this as evidence of psycho-physiological engagement.
Their study inspired us to find connections between audience physiology and the choreography
of particularly noticeable scenes.
Audience HR/HRV has been mostly been studied in lab settings. Shoda et al. conducted a series

of experiments to explore how HR and the spectral features of HRV differ between music that
is live versus recorded, and fast tempo versus slow tempo [82]. They show that audiences tend
to have higher HR and lower sympathovagal balance when listening to faster live performances.
Interactions between pianists and the audience could reduce audience’s physiological stress. In
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Vicary et al.’s study, they tracked the dancers’ acceleration as movement data and the audience’ HR
as affective feedback over five live performances [98]. Their results indicate amovement synchrony
among performers that could predict audience aesthetic appreciation. Instead of looking into the
synchrony among performers, Bachrach et al. used Myriam Gourfink’s choreography to modulate
respiratory rate and internal temporal clock and investigated the entrainment of audiences and
dancers during dance performances [7]. They designed four experimental sessions from which
they collected respiratory rate, and questionnaires related to subjective engagement, and time
perception. Their work suggests that attention to breathing is closely related to entertainment.
Their experimental design and analysis also inspired us to apply choreography as a method to
trigger audience responses and interpret physiological reactions.
The work presented in this article applies multi-modal on-body sensing on audience members.

This physiological data were utilized during the performance and afterwards, which contributes
not only an interactive performance but also a valuable dataset for researchers to investigate audi-
ence reactions in the wild. Furthermore, our dataset was collected across three live performances
with the same choreography. Although it is challenging to control all variables during a study in
the wild, our interpretation of audience physiological data could be more robust and less subjective
by comparing over three performances.

3 APPROACH AND DESIGN CONSIDERATIONS

In this section, we give an overview of the wider Boiling Mind project of which this work is part.
We then detail the artistic and scientific co-design process involved in the work, before expanding
on the iterative design approach that was used.
Boiling Mind is an embodied performance project combining modern dance practices, wearable

sensing, and audio visual design. Both performers and researchers adopted physiological sensing
as a way to explore the relationship between mind and body, invisible inner states and visible
external cues [51]. As an initial use-case for the work, we created a trial 15-minute dance perfor-
mance [32]. Building on this, we developed a full 70-minute dance performance that was performed
three times [88].

We specifically investigated the link between performers and audience members. For this, we
followed a methodology grounded in in-situ and in the wild studies [82, 90] to quantify and ana-
lyze live events. We focus on the audience in this work, introducing minimally intrusive sensing
technology. We are particularly interested in the physiological changes of all audience members:
are they entrained or following any rhythm? When does it happen?

3.1 Co-Design Process

To fulfill our goals, we held regular meetings, discussions, workshops, and test performances over
the course of three years. The process involved 18 dancers, three stage directors, one choreog-
rapher, three stage designers, four visual designers, five engineers, seven researchers (from HCI,
wearable computing, neuroscience, and performing arts), and one audio designer. In total, we con-
ducted weekly meetings, 15 internal workshops, one 15-minute public trial performance, and the
final series of 3 70-minute performances. Figure 2 depicts the overall iterative co-design process
over the three years leading to the research insights presented in this article.
As an interdisciplinary project, there were several challenges for the research and dance teams.

For the research team, instead of developing purely hypothesis-driven work, there was a need to
pay equal attention to the needs of the performers and their vision. Giving control to perform-
ers might increase the risk of creating experiences for which the research questions cannot be
formulated in advance [8]. For the performers, extra effort and time was required throughout the
rehearsal process to understand and cooperate with the technology, as well as to design and adjust
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Fig. 2. This is a graphical overview of the ongoing iterative design process leading to the research insights
described in this article. Five main components during the collaboration are presented in the middle and
arrows show the dependencies and influences between the tasks.

their choreography accordingly. Meanwhile, the choreographer had to work hard to ensure that
the research and technology components did not overpower the dance itself [54]. To offset these
issues, we discussed the motivations of both the dancer and research team in advance. From this,
we established a common goal: to probe the connection between the audience and dance during
live performances. As this is fundamentally about performance, we also established that the design
process and any final decisions about the production were made by the dance team.
The design process was centered around the five main components shown in Figure 2: (1) con-

cept development, (2) initial test performance, (3) sensing feedback design, (4) the main perfor-
mances, and (5) research insights. The concept development was to share domain knowledge and
explore ideas about how to integrate sensing technologies with a dance performance. It started
with practice reports from one of the co-authors who was also in the dance team, which included
some sampling of contemporary dance performances to understand current practices in audience
live responses. Technical members participated in this process, sharing the use of different tech-
nologies early-on to brainstorm about potential implementations. Workshops and rehearsals were
organized during the prototype iterations for a suitable story arc to experience and record audience
live physiological responses. Combined with the sensor tryouts and additional meetings related
to the data visualizations, this led to the first prototypes and test performance. Insights from these
activities led to the next stage of sensing feedback design in the form of an iterative cycle consisting
of choreography workshops, staging elements design, prototype iterations, and prototype tryouts
during rehearsals.
With the final design, we rehearsed and presented three “Boiling Mind Her Chair” main perfor-

mances where audience physiological data were captured and used in real-time to provide visual
and auditory feedback (described in Section 4). Combined with insights from the dance team, our
key research insights are summarized in this article.

3.2 Iterative Design

In this section, we detail important design considerations that were made regarding choreography,
sensing, feedback, audience involvement, and performance duration.

3.2.1 Choreography. The overall theme of the performance is to present women’s struggle
within Japanese society and to encourage others to find their own identities. The choreographer,
an expert in dance performance design, helped craft both the interactive elements as well as phys-
iological feedback effects of the work. Elements of the work were designed to break the “invisi-
ble wall” between dancers and the audience by including the audience’s physiological reactions
directly as a part of performance. Drawing on experience from our test performance [32], the
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Fig. 3. Initial setup for 15-minute public test performance (as described in [32]). Audience physiological data
were projected directly onto three screens on stage: HR, blink and pupil dilation (left), 12 audience members
wore smart glasses (center), 4 members had their BVP readings measured (right). Additionally, 2 audience
members wore pupil labs core eye trackers. The dancers wore accelerometer wrist bands.

choreographer planned specific scenes to trigger changes in audience physiological response as
well as to highlight audience awareness of the effect their physiology can have on performance
visualizations (see the final choreography in Section 4.1).

3.2.2 Sensing. We tried out different sensing technologies and conducted a test performance
(see Figure 3) to evaluate the feasibility of large scale sensing in the theater. One technology we
evaluated was eye-tracking using smart glass-based EEG [17, 43, 91]. We initially planned to have
60–100 participants wearing these; however, test participants reported feeling distracted by wear-
ing something on their head and also did not like to look through the frame of the devices. Based
on these reasons and the spread of COVID-19, we decided against a head-worn approach.
We also tried contact-free computer vision approaches to audience tracking. Kinect, LIDAR sen-

sors, and OpenPose-based action recognition seemed promising [20, 48, 76, 108]. Unfortunately,
lighting levels were too low to adequately capture the audience, and cost restrictions forbade the
installation of additional (e.g., infrared) cameras. Even if this approach were feasible, some partici-
pants cited privacy concerns about the use of cameras. Instead, we turned to BVP and EDA sensing.
Initially, we used commercial wrist-worn devices, like the E4 wrist bands from Empatica [34], but
these showed poor data reliability and signal quality. This led us to develop our finger-based sens-
ing hardware, described in Section 4.2). Audiences and test participants were more open to devices
worn on their fingers and wrists than they were to head-worn approaches.

3.2.3 Feedback. One of the major challenges was implementing the feedback loop between
dancers’ movements and the audience physiological data in a noticeable but harmonious way. We
selected the music and sound elements for our prime feedback loop in the main performances. The
music for Boiling Mind consisted of our original compositions and existing pre-recorded tracks,
including Maurice Ravel’s Bolero [106]. The main feedback was implemented in our original com-
position sessions where the audience physiological data would affect three main aspects of the
music: (1) rhythm, (2) timbre, and (3) texture [104]. Our initial design was to attach the audience’s
HR to the music’s tempo. However, after we tested the feedback with physiological data streamed
in real time, we found this direct link was not stable enough to dance with. Therefore, we finally
decided to use the audience physiological data as a loose guide to trigger the changes of sound
elements. Table 2 summarizes key feedback designs in the main performances and more detailed
feedback design were included in our previous article [32].

3.2.4 Audience Involvement. Amajor difference between previous work and ours is the involve-
ment of the entire audience.
Introducing novel interaction techniques to provide different means of live audience responses

can have negative effects when they are not distributed to all or themajority of an audience. During
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a test performance, described in Fu et al. [32], we equipped between 10 and 20 participants from an
audience with eye-tracking smart glasses, and used this data to incorporate some limited feedback
on stage. Non-equipped audience members requested to be part of the performance and felt “left
out.” Although it is challenging to assess how strong this effect is in general, we want to highlight
these issues as related work so far has not touched on the broad accessibility of novel interaction
technologies in live performances.
These observations led us to equip all audience who wish to participate with sensors, and to

favour the use of more unobtrusive, hand-worn sensors. As a result, 98 people (from a total audi-
ence count of 139) participated over the 3 performances.1

3.2.5 Performance Duration. There were several competing factors in setting the duration of
the performances. Many individual performances by the dance groups we work with are around
10–20 min long. At first this seemed to be a suitable length, as it gives scope for creating an easily
repeatable experimental setup. Yet, it was difficult to see longer term changes in the recordings of
the physiological data. In particular, physiological changes in EDA and HR have been shown to
undergo significant changes from 30–45 min [82, 84]. From a data analysis point of view, several
hours of data would be ideal, but a contemporary dance performances lasting that long would be
a strain for performers and the audience.
As a compromise, we decided on a duration of just over an hour (70min). This provides sufficient

data to observe interesting changes, while keeping in line with typical audience expectations (as
surveyed during our experience with the Tokyo dance scene).

4 MAIN PERFORMANCES

Here, we describe the final setup and procedure used in the main performances. We first detail
the choreography scene-by-scene. Next, we describe the design of our prototype implementation
for a wearable sensing system, which records and analyzes the physiological data of the audience
during the performance. We then outline the specific preparations made before each performance
and report on the demographics of our participating audiences.

4.1 Choreography

Each performance involved seven female dancers and lasted for about one hour. For analysis, we
divided the recordings into six sections, each containing one or more choreographic events. These
sections are shown in Figure 4 and are described as follows:

Section 1: Suits. The performance starts with dancers playing the role of working women in suits
and high heels trying to break out of societal pressures. At the end of this section, all dancers take
off their suits and their heels. This intense movement was designed to raise the excitement level
of the audience, mirroring the rhythmic, and dynamic crescendo of Ravel’s Boléro.

Section 2: Cards. At approximately 11 min into the show, the dancers engage audience members
in short conversations while handing out business cards. After the dancers return to the stage, they
start hitting the floor in rhythm using their heels in hand. At 17 min, the dynamics and gestures
of Boléro reach a final peak and one of the dancers rushes to the front of the stage to perform an
aggressive solo (see Figure 4(2)).

Section 3: Puppet. At 18 minutes, the music turns to a more gentle and dark feel. At the same
time, the previous solo dancer lays down in the center of the stage. One of the dancers brings
a chair to the stage and the others gather around. All dancers start moving slowly and quietly

1The “Session House” in Tokyo and similar venues we are collaborating with can hold up to 100 visitors depending on
stage design.
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Fig. 4. Six sections: (1) Section 1: Suits, (2) Section 2: Cards (Solo), (3) Section 3: Puppet, (4) Section 4: Romeo,
(5) Section 5: Growth, and (6) Section 6: Curtain.

along with the music. The chair represents everyone’s position in the world. As the performance
develops, each performer dances with a puppet that represents their alter ego. At the 24th minute,
one dancer hands the puppet to an audience member. The choreography and music work together
to create a mysterious and sombre tone.

Section 4: Romeo. At 37 minutes, one of the dancers invites a man from the audience to play
the role of Romeo. He is led to the stage and sat on the chair, which was placed in the center of
the stage. He is then asked to hug a dancer and dance together with the ensemble. The dancers
start to improvise and reach out to Romeo to show they are happy to see him there. If he smiles,
the dancers interact with him in an entertaining and playful way. If Romeo does not respond to
the dancers accordingly, the dancers ask the rest of the audience to encourage him with applause.
Some of the interactions between the Romeo and the dancers led to laughter among the audience.

Section 5: Growth.At 40minutes, the second half of the performance develops into a deeper story.
The dancers indicate the conflicting and complex feelings of instability, confusion, and joy that we
all experience as we grow from childhood to adulthood. One of the dancers follows another one
like a playful animal companion (e.g., a dog) willingly walking after its owner, clinging to her legs.
This scenewas designed to evoke the audience’s sense of security and trust in being loved by others.
The music for this part is quite sedated and relaxed, consisting of sparse synthesized textures and
abstract rhythmic layers. As the final coda approaches, the dancers dress up as working women
again but with different colorful designs embroidered into the back of their suits. This was intended
to show a more positive meaning while referencing the beginning working women scene. The
composed music reworked themes from Boléro into a more upbeat electronic treatment.

Section 6: Curtain. After 70 minutes, there is the curtain call, when all of the dancers and crew
members line up in front of the stage and bow to the audience.

4.2 Prototype Implementation

We built wrist-worn devices measuring EDA from two electrodes on the fingers, and the HR using
an optical BVP sensor placed on the fingertip (see Figure 5). The device uses an ESP32 module with
Bluetooth and WiFi connectivity. It samples the BVP at 50 Hz and EDA at 4.545 Hz. The analog
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Fig. 5. Left: Wristband with EDA, heart activity, acceleration, and gyro sensors. Right: Wristbands and con-
sent from on the audience seats. The performance was held in an art studio with flexible uses—Session
House. Before the performance, the staff from the Session House arranged seats for the audience. Cushion
seats were used for the front rows to avoid obstructing the views of the audience who were sitting behind.

Table 2. Key Feedback Designs between the Audience Physiological Signal and the Staging Elements

Section Visual Element Sound Element LF/HF ratio EDA

Suits
one graph per
audience member

– value shows in the graph value shows in the graph

Cards
one orb visual per
audience member

– control the orb’s color
EDA difference controls
speed of orb movement

Puppet smoky fluid simulation soundscape
average value controls
the frequency and amount of
smoke cloud’s appearance

average value controls the
amount of current smoke cloud and
sub-frequencies into the soundscape

Romeo one graph for Romeo –
The value shows in the graph
and controls graph’s color

The value shows in the graph

Growth one wave for all members drum sounds

Average value controls
the wave’s color and
dictates the pitch variance
in the drum sounds

Average EDA difference controls
the height of the wave and
triggers the stuttering

More Details of the Implementation are Included in our Previous Article [88].

front-end of the EDA measuring circuitry consists of a Wheatstone measuring bridge connected
to an AD8237 instrumentation amplifier feeding the data to the ESP32’s internal 12-bit ADC. To
save energy, each device buffers the data in 400 ms chunks and sends out the buffer 2.5 times
per second. Both raw and filtered values were streamed and recorded through bluetooth. The
analysis presented here uses only the raw values, while filtered values were used in the real-time
visualisations. Transient response time of the digital filter output is guaranteed to be within 5%
of the steady state in 10 seconds, which was necessary to provide smooth signal for the visuals
generation without the noise from touching or adjusting the electrodes. More detailed technical
implementation is included in our previous article [88].

In addition to the EDA and BVP, we recorded movement data using a 9-axis Bosch bmx160 abso-
lute orientation sensor. The accelerometer and gyroscope were sampled at 50 Hz, magnetometer
data were not recorded. For the feedback design, only EDA and BVP data were used as input to
influence visual and sound elements on the stage (see Table 2).

4.3 Performance, Preparation, and Consent

Before each performance, all wristbands were disinfected with alcohol and placed on the seats
together with performance flyers, consent forms and pens (see Figure 5).
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Before the performance started, the host introduced the audience to the concept of our project
and the design of the stage elements (see the stage visual design in Figure 4). The audience was
briefed on the performance concept meaning the inclusion of physiological data into stage ele-
ments. All audience members were briefed about our experimental setup and were asked to read
through the consent forms on their seats (see Figure 5). By signing the form, they agreed to par-
ticipate and to record their physiological data. The experimental setup and data collection was
conducted according to ethics rules and regulations of Keio University. We had 41–50 devices for
each performance for data recording.
The connection of the physiological data from the wristbands and the visual projections, lights

and music was demonstrated to the audience using a short section of pre-recorded data. The host
explained how the physiological data could influence these changes, but we did not encourage
them to consciously control it. Although there are some possible techniques to regulate heart rate
or EDA, it is still challenging to control intentionally and such techniques or intentions might
affect the audience’s overall immersion and experience.

4.4 Audience Demographics

We recruited 98 participants (self-identified as male = 49; female = 49) from the audiences of three
performances at the “Session House” during March 2020 (from total audience sizes of 57, 37, and
45). After removing incomplete or noisy data, we had physiological data from 80 participants
(male = 38; female = 42). For the full details of these recordings, see Supplementary Material A.1.

Afterwards, the participants were asked to fill out an online questionnaire through a QR code
on the performance flyers.

5 ANALYSIS OF AUDIENCE FEEDBACK

This section presents the pre-processing and results of analysing our audience feedback using both
physiology (BVP and EDA) and post-show surveys.

5.1 Preprocessing of Physiological Data

5.1.1 Blood Volume Pulse (BVP). We extracted four commonly used HRV features from the
recorded Blood Volume Pulse (BVP) data [81]. In a pre-processing step, we used acceleration
data to help us identify and remove movement artifacts. To do this, we ran a peak detection al-
gorithm on the euclidean norm of the accelerometer axes. If any peaks greater than 1.5 standard
deviation were found, then we excluded the HRV data for 1s around each peak.
A 2nd order Butterworth low pass filter (from python package, scipy.signal) was then used to

cut high frequency noise above 3.5 Hz [67, 99]. Heartpy, an python package for processing raw HR
data, was used to get inter-beat (RR) intervals [97]. HRV features were calculated every 4 minutes
with a 2-minute sliding window. These extracted features are:

— LF/HF ratio: the ratio of low frequency (LF) to high frequency (HF) power
— SDNN: the standard deviation of the inter beats intervals of normal sinus beats
—RMSSD: the root mean square of successive differences between normal heartbeats
— PNN50: the percentage of adjacent normal-to-normal intervals that differ from each other
by more than 50 ms

Figure 6 shows the timeplots of each of these features’ using the data from the third performance.
The HRV features were divided by mean RR intervals of each participant for normalization to
remove baseline differences between individuals [19, 74, 75]. For each minute, HRV features were
averaged for each participant. The data were labelled in accordance with the six choreographed
sections for analysis.
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Fig. 6. Timecourse of the four HRV features from the third performance. Significant Pearson’s correlations
exist between PNN50 and SDNN (r(35) = 0.99, p < .001), and between PNN50 and RMSSD (r(35) = 0.99, p <
.001) - with the later correlation also reported in other works [52, 80].

Fig. 7. EDA data of participant 23 (third performance). The raw EDA data from 12-bit ADC (0–4095 range)
is depicted in light blue. The low-pass filtered data are depicted in blue; Orange markers depict recognized
peaks in skin conductivity (local maxima); Purple markers depict recognized valleys (local minima).

5.1.2 Electrodermal Activity (EDA). Each participant’s raw Electrodermal Activity (EDA)
data were passed through a 2nd order Butterworth low-pass filter from the scipy.signal package
(0.01 Hz) [99]. For EDA data analysis, we focused on the changes in EDA response, which is the first
derivative of the EDA data.We refer to this as EDA difference. For each minute, the EDA differences
were averaged for each participant. The data were labeled in accordance with six choreographed
sections for analysis.
During the live performance, the EDA difference was used to affect the speed of change of the

visualizations.
Because the onset of strong emotions is typically characterised by noticeably increased sweating

on the skin, we looked specifically into the timings when skin conductance drastically increased.
We refer to these points as EDA extrema. We detected peaks and valleys of skin conductance with
prominence of 1.25% of the measurement range (0–4,095 due to 12-bit ADC) and inter-peak dis-
tance of at least 30 seconds. Since the performance venue is located underground with no cell-
phone coverage and during the performance, the only light was coming from the stage, we con-
sider all spikes in skin conductivity to be very likely related to the subject’s experience of the
performance. Figure 7 shows an example of the process for locating EDA extrema. We counted
the number of audience members who had experienced EDA extrema every minute to represent
audience collective arousal feedback, which was addressed as EDA extrema count for describing
our results and findings.
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Fig. 8. Trends of PNN50 and LF/HF ratio with noticeable turning points. The timeseries shows noticeably
similar patterns of HRV feature values across the three performances. i highlights the decline at the end of

the section “Suits”. ii marks peaks in the section “Cards”. iii highlights the peak in the section “Puppet”.

Finally, iv marks the start of “Romeo”.

5.2 Results: Physiological Data (HRV and EDA)

5.2.1 Heart Rate Variability (HRV). We initially extracted the four different HRV features as
detailed above: LF/HF, PNN50, SDNN, and RMSSD. Whereas PNN50, SDNN, and RMSSD all reveal
a similar timecourse, LF/HF ratio presents a very different pattern (see also Figure 6). Therefore,
we choose only one of the three similar HRV features, PNN50, for further analysis for two rea-
sons: Firstly PNN50 is easier to interpret because it represents parasympathetic nervous system

(PSNS) only, which is associated with rest, and is consequently less influenced by sympathetic

nervous system (SNS) (associated with excitement). In contrast, SDNN and RMSSD are driven
by a mixture of PSNS and SNS, which can make interpretation more difficult [1, 27, 65]. Secondly,
PNN50 is simple to calculate, which makes it useful as an indicator in designing a future real-time
system.
We inspected the timeseries of the average LF/HF ratio and PNN50 over all audience members

for each performance (see Figure 8). The timeseries shows noticeably similar patterns of HRV
feature values across the three performances. For example, LF/HF ratios decline at the end of the
section “Suits” and start rising at the start of the section “Cards”. Then it first drops, and peaks again
at around 30 minutes. The PNN50 is low at the start, but rises steadily throughout the performance.
However, there is a sharper and drastic increase between the end of the section “Puppet” and the
start of “Romeo”.

5.2.2 HRV Scene Aggregate. As a further analysis, we aggregated the timeseries to produce sta-
tistics for each of the six main sections. A repeated measures ANOVA with a Greenhouse-Gessier
correction was used to investigate the correlation and variance. For the post-hoc tests, we applied
Bonferroni correction to prevent the inflation of type-I errors.

ACM Transactions on Computer-Human Interaction, Vol. 30, No. 1, Article 9. Publication date: March 2023.



9:16 J. Han et al.

Fig. 9. EDA changes with EDA extrema counts (bar chart). EDA extrema peaks (highlighted in yellow) are
selected as being over 1.5 standard deviation from the total EDA extrema counts, compared to EDA extrema
within two or more minutes. The timeseries shows noticeably similar patterns of EDA feature values (EDA
changes declined with outstanding EDA extrema peaks) at certain scenes across the three performances. The
scenes are marked as a (the start of the section “Cards”), Around b (the end of “Cards”), c (the start of

“Romeo”), and d (the end of “Romeo”).

Fig. 10. Distribution of LF/HF ratio in six sections of three performances. The violin plots illustrate proba-
bility density, while individual observations are the dots within the violin graphs. The horizontal blue line
represents the average LF/HF for each performance. The only significant pairwise difference is between Suits
and Curtain in performance 3 (*p < .05).

There were no statistically significant differences for LF/HF across the six sections over perfor-
mance 1 (F(1.73, 44.93) = 0.351, p = .675) and performance 2 (F(3.15, 81.85) = 1.16, p = .33). Significant
differences were present in performance 3 (F(3.37, 84.34) = 4.84, p = .003, η2p = .162). In the post-hoc
analysis we found that significant differences only existed between “Suits” (M = .0021, SD = .0012)
and “Curtain” (M = .0012, SD = .0005) with p = .027 each. Since these two sections marked the
beginning and end of only one performance, this effect is likely an anomaly. These results also
depicted by Figure 10.

When analysing the mean PNN50 value, we found statistically significant differences between
the six sections in performance 1 (F(2.81, 73.04) = 30.39, p < .001, η2p = .539), performance
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Fig. 11. Distribution of PNN50 in six sections of three performances. The violin plots illustrate probability
density, while individual observations are the dots within the violin graphs. The horizontal blue line repre-
sents the average PNN50 for each performance. The vertical lines drawn between two graphs indicate the
significant levels of pairwise comparison results (*p < .05, **p < .005, ***p < .001). The pairwise comparison
shows distinguishable separation between the first half (before Romeo) and the second half (from the end
of Romeo).

2 (F(3.10, 80.70) = 34.26, p < .001, η2p = .569), and performance 3 (F(2.56, 64.08) = 18.40, p < .001,

η2p = .424). (Full descriptive statistics are provided in Supplementary Material A.3, Figure 11 de-
picts the distributions and pairwise comparisons.)

5.2.3 Electrodermal Activity (EDA). We inspect the EDA response using our two features: aver-
age EDA difference and EDA extrema counts (Figure 9). The timeseries reveals large changes at the
beginning of each performance when the lights go off and the music starts, as well as at the end
when the performers take a bow. Throughout the performances there are also common changes
at around 13 minutes, marked in Figure 9 as a , 19 minutes b , 37 minutes c , and 41 minutes d .
(Note that EDA extrema is shown in bar chart form to highlight that, unlike the other features, it
represents a discrete count rather than an average.)

5.2.4 EDA Scene Aggregate. We calculated an aggregate pairwise comparison of EDA differ-
ence distributions between the 6 sections for each of the 3 performances (shown in Figure 12).
After Bonferroni correction, we found that both Romeo and Curtain are statistically different to
the other sections. According to a repeated measures of ANOVA with a Greenhouse-Gessier cor-
rection, mean EDA difference values differed in a statistically significant way between the sections
in performance 1 (F(1.61, 41.93) = 13.41, p < .001, η2p = .340), performance 2 (F(2.17, 49.97) = 8.15,

p = .001, η2p = .262), and performance 3 (F(2.16, 49.56) = 11.34, p < .001, η2p = .330). (Full descriptive
statistics are provided in Table 4.)

5.3 Audience Questionnaires

We used online questionnaires after each performance to gather audience feedback. These were
accessible using a QR code on flyers handed out to each attendee. Responses were encouraged but
not mandatory.

5.3.1 Questionnaire Content. The questionnaire assessed demographics, cultural background
(how often do you visit theater/dance performances), and performance specifics (enjoyment of
performance). Free-text answers were given to the specific question of “how much did you feel
like participating in the performance”, as well as general opinion on the piece. The full list of
questions can be found in the Supplementary Material A.2.
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Fig. 12. Distribution of EDA difference in six sections of three performances. The violin plots illustrate prob-
ability density, while individual observations are the dots within the violin graphs. The horizontal blue line
represents the average EDA difference for each performance. The vertical lines drawn between two graphs
indicate the significant levels of pairwise comparison results (*p < .05, **p < .005, ***p < .001). Romeo and
Curtain show significant differences to the other sections.

5.3.2 Questionnaire Participants. We received questionnaires from 35 participants in total (self-
identified as male = 16; female = 18; prefer not to say = 1). Since the questionnaires were not
completed by all participants, we consider these answers as supplementary information.

5.4 Results: Feedback from the Audience

Among the 35 respondents, 30 reported to experience of watching dance (every week: N = 3; every
month: N = 8; every year: N = 19). For the open-ended questions, we categorized the feedback and
reported as follows:

5.4.1 Participation in the Performance. A lot of feedback described strong feelings of participa-
tion compared to previous experiences. The simple knowledge that the audience was sensed might
have played a part in this:

I was not sure if my heart rate really affected the visuals, but I was excited when thinking
my heart rate was being measured. I felt like I was on stage at that time.

The display of physiological data and the link between color and excitement were impres-
sive and I felt I participated in it.

Some participants reported a feeling of connection between audience and dancers:

Lighting and visuals changed in response to the audience’s sensors, and I enjoyed the
two-way interactions in this performance.

However, others found the system confusing:

The music and visuals changed as our excitement changed. However, the lighting was a
little difficult to notice.

And some even felt a disconnect between how they felt and what they saw:

Sometimes the visuals from the sensor data matched my excitement while sometimes they
did not match.

5.4.2 Memorable Moments. Generally, participants considered the visualization, music, and
dance as intriguing and meditative:
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Whenever I watch their dance, something refreshing my memory happens. This time I
had this feeling as well.

Several audience members shared memorable moments:

I felt that music, sound, rhythm, and breaks tended to be the switches of excitement. Dur-
ing Bolero’s gradation and explosion, rhythm and dance were connected closely.

Dancers eye contacts when they using high heels to hit the floor were cool.

I may be more excited in quiet and dark moments than when I’m feeling something in-
tense will happen. I thought dancing the chair and the scene of the Japanese song were
wonderful.

5.4.3 Sense of Unity. When asked about their free opinions, most of participants mentioned
they experienced a strong sense of unity between audience and dancer during the performance:

The abstract visual expression was very beautiful in connection with the dance. I felt that
my senses were integrated with the dance through this indirect media.

And among audience members:

I can feel not only my own sense of participation, but also other audience’s reaction re-
flected. I was able to realize the sense of unity between the audience, which is usually
hard to feel.

However, one audiencemember doubted the need to enhance the sense of unity between dancers
and audience suggesting that audience reactions may vary a lot due to different compositions of
audience and this could make quality control harder:

In dance performances, “today’s audience’s feeling” and “sense of unity” seem to be less
important to me. If the music and lighting change depending on the audience of the day,
the impression of the work will change accordingly.

6 DANCE TEAM FOCUS GROUP

To understand dancers’ personal experience during the performance and attitudes toward the col-
laboration process, we conducted a focus group with five dancers which draws on the approach
used by Huskey et al. [42].

6.1 Methodology

The semi-structured focus group was conducted via video conferencing three months after the
performance when we had identified initial research insights. One of our co-authors, who is also
in the dance team, was the facilitator. We encouraged the dancers to talk freely using the following
pre-prepared questions as a guide:

(1) Share your experience and feeling when you saw the visualization, lighting, and the change
ofmusic triggered by the audience reactions. (Did you notice anything interesting, shocking,
or disappointing?)

(2) Was this experience different from previous performances?
(3) What do you think about this collaboration? Share some experience of your memory about

the collaboration.

All participants discussed in Japanese and videos were recorded for later transcription.We trans-
lated the transcripts and categorized the qualitative feedback.
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6.2 Results: Dance Team Feedback

In general, dancers followed the choreography as they rehearsed without influence from the
audience-derived visualizations. Two reasons were given for this. First, they had to focus on the
performance itself with little time to care about changes in visualizations:

In the scene of Bolero, I need imagine the train’s passing by during my dance and was not
able to pay attention to visualizations until the scene changed, (D1).

When I was waiting for my turn, audience heart rate displayed was very exciting. After
I started dancing, though it was fun to see that, I could not spare my attention to the
changes. I think we need more times to get used to it, (D3).

The second is that they were sometimes confused by the meaning of the visualizations:

I felt it was tough to balance between something researchers want to show and something
dancers want to show. It was difficult for me to fully understand the visuals’ meanings
and the formal performance day came, (D1).

I did not understand the meaning when the lighting started to flicker. I did not see it as
audience heart rates and it did not change that obviously,. (The audience BPM data was
mapped to the intensity of the lighting changes.) (D2)

Three dancers said that there were moments when they could sense audience reactions and one
dancer were even influenced to adjust their movements:

I was aware of the visualizations when it came to the Romeo scene while the data used in
generating the feedback loop was from the chosen audience,. (D1)

It was very easy to see when audience felt more excited, but it was less noticeable for the
calmer scene and I felt that audience’s feelings did not change from the visualizations,
(D2).

When I danced with a puppet, I noticed the coloring of the visualizations were blue and I
tried to dance intenser and faster, even hit the floor more painfully to get audience more
sympathized and aroused, (D4).

The dancers also thought there could be more space for improvisation where they could dance
according to audience reactions, but it would be more difficult in terms of the choreography (D1,
D2, and D4). To solve this, D2 mentioned they could “predetermine some triggers and reactions”
accordingly during certain moments instead of improvising throughout the whole performance.

7 DISCUSSION AND IMPLICATIONS

In this section, we describe our main findings from our analysis of the physiological dataset and
the qualitative feedback, followed by an interpretation of the physiological data against the artistic
intent of the choreography.

7.1 Connecting Physiological Data to the Choreography

We first look at the overall timeline of the performance, highlighting notable moments from the
choreography, and how these relate to changes in audience’s physiological data. For ease of com-
parison, we summarise the four main physiological features—PNN50, LF/HF, EDA difference, and
EDA extrema—from Figures 8 and 9 into one plot, Figure 13. We also highlight five noticeable
moments in the data for further discussion. These moments are summarised in Table 3.

7.1.1 The Performance Timeline. According to the choreographer, the first half of the perfor-
mance (through the section “Romeo”) was designed to directly engage the audience and elicit
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Fig. 13. The change of HRV features (Left Y scale) and EDA features (Right Y scale). EDA extrema peaks
(highlighted in dark gray) are selected as being over 1.5 standard deviation from the total EDA extrema
counts, compared to EDA extrema within two or more minutes. Five key moments are marked as 1 (hand
out business cards), 2 (reach bolero peak), 3 (move toward audience with a puppet), 4 (invite audience
member as Romeo), and 5 (the Romeo is back to the audience).

Table 3. Physiological Changes at Five Notable Moments Marked in the Figure 13

Moment Choreography elements
Changes in HRV Changes in EDA

LF/HF ratio PNN50 EDA Difference EDA extrema

1
Direct interaction, dancers to the audience,
short time (5 s)

– – Abrupt drop Outstanding peak

2
Music builds up, aggressive solo,
strong rhythm by high heels

Noticeable spike – Abrupt drop Outstanding peak

3
Dancers moving toward the audience,
long time (20 s)

Noticeable spike – – –

4
Direct interaction, one audience member
to the stage

– High Level Abrupt drop Outstanding peak

5 The audience member back – High Level – Outstanding peak

strong emotional reactions that might be more easily captured by the system. This includes direct
interactive elements (e.g., “Cards”) as well as tense musical rhythms (e.g., “Puppet”). In the section
“Romeo”, a direct and close interaction with one member of the audience was designed to elicit
extreme involvement and empathy. The second half (from the start of the section “Growth”) was
designed to be less interactive and more reflective. In contrast to the previous half, “Growth” did
not involve any direct interaction between dancers and the audience in order to help the audience
“digest” the piece and reflect on their own experiences. The choreographer’s intent here is to pro-
vide space to focus on the inherent message of the performance. In fact, several members of the
audience reported that they experienced this as a process of “meditation”. Accordingly, the PNN50
shows a rising trend across all performances (see also Figure 13), with a significant increase be-
tween the second and first halves (see Figure 11). An increase in PNN50, being closely linked to
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PSNS, is associated with relaxation [13, 70]. This trend over three performances could indicate the
audience easing into the performance as it progressed.

7.1.2 Notable Moments from the Data. The changes of HRV and EDA features reflect the inter-
nal physiological reactions of the audience in response to certain choreographic elements. From
Figure 13, it is hard to identify a clear long-duration trend of LF/HF over the three performances.
The lack of any significant inter-scene difference in Figure 10 supports this. However, spikes of
LF/HF ratios appear when the audience was subjected to relatively long scenes with an intensive
crescendo (e.g., as the Bolero dance peaks 2 , or when the Puppet is moved toward the audience
3 ). As an indicator of the balance between SNS and PSNS activity [81], LF/HF ratio could imply
stress [78], anxiety [83], or excitement [9, 44, 66]. Even though the interpretation of the LF/HF ra-
tio is controversial [11], it is still possible to explain the changes with careful consideration of the
recording contexts [81]. Since the trend of LF/HF ratio does not synchronize with that of PNN50
(an established measurement of PSNS), we are inclined to believe that these changes of LF/HF ra-
tio were mostly due to increased arousal under the influence of SNS activity. This is supported by
previous work on the physiological responses to music, where significant LF/HF increases were
observed during exciting, fast-tempo music [9, 66].

Across all performances, there is a steep increase in PNN50 starting from the end of Puppet and
Romeo. This is also reflected, in part, in the pairwise scene aggregate results of Figure 11, where
the change is significant for performances 2 and 3. Since increased PNN50 has been linked to
engagement and sustained attention [39, 71], the change in PNN50 observed here seems to reflect
the choreographic intention to create a sense of security and reflection during this section of the
performance.
Direct and intense interactions between the audience and the dancers correspond to both

abrupt drops in EDA difference and large peaks in EDA extrema counts (see Figure 13( 1 ,
2 , 4 ). As an index of emotional activation, EDA can reflect arousal regardless of valence
types [3, 14, 53, 79]. Previous audience studies have connected EDA to engagement [55] and shock-
effects during the performance [101]. In our study, we interpret observed EDA changes as indica-
tions of audience’s surprise 1 , excitement 2 , and tension 4 modulated by the choreography.
EDA difference declines notably around the Romeo scene 4 . Looking at the collective measure-
ment for the audience as a whole, EDA extrema counts are also highest around the Romeo scene.
This suggests that inviting someone on stage (e.g., to play Romeo) may trigger sudden tension
among the remaining audience, whether in sympathy, or in anticipation that they might be in-
vited next).

7.1.3 Mapping Audience Physiology and Choreography. Mapping different measures of audi-
ence physiology over the choreographic arc can help researchers and practitioners maintain a
multi-modal, holistic view of live performance. Increased arousal related to SNS activation has
been interpreted as high engagement or participation [55, 101]. However, increased arousal level
should not be the only criteria for understanding the audience’s reactions. Although the second
half of our performance was expected to correspond to decreased arousal because of themeditative
theme and atmosphere, the opposite was observed. We therefore propose considering both PSNS
and SNS changes alongside choreographic structure (such as the overall story theme, interactive
elements, and music crescendo) when investigating the physiological responses of the audience.

7.2 Implications for Physiological Feedback Design in Interactive Performances

Based on the above exploration of the dataset and qualitative feedback from the audience and
dancers, we reflect on the physiological feedback design for interactive performances.
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7.2.1 Choices of HRV and EDA Features. EDA difference is more sensitive to short, sudden elic-
itation compared to HRV-based features. Because it is directly linked to sympathetic activation
and is generally quite discriminable [26], EDA difference is well-suited to gauging audience reac-
tions in real time, particularly during short temporal moments like direct interactions or shock-
effects [101]. EDA extrema, as an aggregated feature, might also be used with a threshold based
on the majority of the audience’s physiological reactions. However, the calculation relies on com-
paring to a global average and therefore a large chunk of data are required. This may make it
unsuitable for real-time use when the data size is not adequate. However, as a post-recording anal-
ysis tool, it can help identify moments where the majority of the audience experience increased
arousal. HRV features could be used to capture the audience’s moment-by-moment experience
as the theme of the piece develops. LF/HF ratio presents more frequent fluctuations compared
to other HRV features. Although not as sensitive as EDA measurements, it can capture growing
arousal during particularly emotional moments. PNN50, calculated as the difference between ad-
jacent heart periods, is nominally independent of resting HR [10]. This makes PNN50 relatively
representative of the audience’s PSNS activity and associated reactions such as relaxation and sus-
tained attention [13, 39, 70, 71]. We suggest using PNN50 as an indicator when there are obvious
contextual affect changes, such as tension and relief, or conflict and reconciliation.

7.2.2 Interaction with the Audience’s Physiological Feedback. The dancers reported focusing
more on their movements than on the changing audience feedback. One reason could be the lack
of the perceived agency within the interaction because the effects were triggered by the audience’s
physiology instead of the dancers’ own responses as in previous works [31, 54, 56]. Another reason
could be due to their lack of experience with the novel technology. Despite this, there were some
scenes where the dancers responded strongly to the audience feedback, such as when they moved
faster in order to elicit a change in the coloring. Drawing on this, it would be useful to explore a
tighter integration between this technology and dance by incorporating the practice of audience
feedback earlier in the rehearsal process. This would familiarise the dancers with the system and
allow them to explore more nuanced and interesting responses to unexpected feedback.

7.3 Implications for Co-design Process

We summarize implications for interdisciplinary collaboration between HCI researchers and per-
formers by reflecting on our three-year collaboration.

7.3.1 Balance around Goals. The goals of researchers and dancers can be very different even
in the same project, so it is important for the project’s success to uncover shared goals [54]. One
shared goal in our case was to explore and enhance the invisible link between the dancers and
the audience through performance. Although in this work we prioritized artistic values such as
the consistency of the theme and the immersive experience of the audience, the choreographer
worked closely with researchers to include performance sections that were explicitly designed to
trigger clear emotional changes—changes that prior evidence suggested would trigger physiologi-
cal responses.

7.3.2 Negotiate through Practices. Regular meet-ups at each stage of the co-design process are
essential. The artistic director connected the dance team and research team and led the negotia-
tions by conveying expected choreographic elements and showing sensor feedback samples. The
two teams met regularly and organized workshops to make and revise design choices. A summary
of the workshop and meetup schedule can be found in Supplementary Material A.4. Researchers
attended major rehearsals, observed the stage conditions, and tested prototypes on the spot.
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Considering the pivotal role of music in the work, the dancers were also given access to samples
of audio feedback as it was developed.

7.3.3 Share Research Insights. It is important that any findings and insights uncovered by the
research team are regularly shared with the performers. For example, following the performances,
we shared a version of Figure 9 with the dance team. Revealing the mapping of physiology and
choreography in this way helped provide a fertile ground for further discussion. During the dis-
cussion, dancers matched scenes to changes in the graphs and shared their feelings, experiences,
and audience comments around those specific moments. Some of the dancers mentioned they had
trouble understanding the data visualization during the performance. However, looking back on
the data afterwards provided them more time and space to consider the effects. They even further
reflected on how to improvise while referring to the feedback loop system and contributed valu-
able insights to the interpretation of physiological data. This process was crucial to our co-creation
project and helped us plan the way for future collaboration.

7.4 Lessons Learned

The work presented here is primarily practice-led, where research methods, contexts, and outputs
involve a significant focus on creative practice [8, 85, 89]. Based on our investigation of the audi-
ence’s physiological data and the co-design process, we summarize the lessons learned for both
HCI researchers and performance artists.
For HCI practitioners interested in performance and audience interaction, our approach ex-

plores an effective way to collect, analyze, and interpret audience experience during live perfor-
mance. Live dance performance is a useful in-the-wild scenario to explore interaction paradigms
that move away from the individual and toward interactions in larger-scale groups. Although
academic research is usually conducted as goal-oriented, while artistic practice is more process-
driven [85], both teams converged around the common goal to enhance the invisible link between
dancers and audience through performance. This co-design process led to a series of novel perfor-
mances and large-scale physiological data collections from the audience. Our exploration of the
dataset reveals a link between the choreography and the audience’s physiology. PNN50, being
closely related to PSNS activation, shows a general rising trend and a significant increase from
the second half sections. We found PNN50 could be a reliable and robust indicator of the audi-
ence’s tension and relaxation during the performance. Moreover, LF/HF ratio, EDA difference, and
EDA extrema could reflect the audience physiological reaction (e.g., excitement, surprise, and anx-
iety) elicited by choreographic elements such as strong rhythms and direct audience interaction.
Our findings suggest the potential for a more holistic view on understanding and quantifying
audience experience by cross-mapping choreography and physiology.
For performance artists, our research opens a viable method to incorporate audience physiolog-

ical data within a live performance. Based on our post-analysis of the audience physiological data
and the feedback from the dancers, we provide suggestions about choosing HRV and EDA features
for live feedback. EDA difference is well-suited to gauge audience reactions in real time, since it is
sensitive to short and sudden changes in arousal like shock effects. HRV features may be used to
reflect the audience’s moment-to-moment experience or long term growth of emotional arousal.
PNN50 in particular is a robust measure for visualizing a sustained change in engagement, or a
shift from tension to relaxation.
The choreographer and the artistic director suggested some focal points for future improve-

ment. One focus is to investigate different forms of aesthetic interaction that might generate a
clearer feedback loop between the audience’s physiological reaction and the improvisations. An-
other focus is to improve the audiences’ feeling of comfort during the performance—enhancing
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confidence and trust in the performance environment, both artistically and with the technology.
Creating a suitable environment benefits the audience experience, their enjoyment of the perfor-
mance, as well as enhances the potential to obtain better quality data for research.

7.5 Limitations and Future Work

First, our dataset was collected from a real performance where audience physiological data was
used to trigger changes of staging elements. The existence of the feedback loop complicated the ex-
ploration and interpretation of the results. In the current stage, we could not find a feasible method
to evaluate the effect of feedback system on audience physiological response. One possible method
could be dividing the audience into control and experiment groups for baseline investigation. How-
ever, according to our previous feedback from the audience group, this can disappoint the audience
and may not be acceptable in a real commercial performance. Another method could be organizing
a separate lab study with the same or similar setup to quantify the effect of the feedback. Yet, in
this case, the complexity of the audience response in the wild might be left out. We consider this is
also a challenging but valuable topic for further investigations. Moreover, there were no negative
questions in the questionnaire, which could result in incomplete feedback and we only analyzed
open-ended questions this time. For our further studies, we will carefully design the questionnaire
and also consider including an annotated post-viewing session to achieve a comprehensive under-
standing of memorable scenes quantitatively.
Additionally, we were not able to obtain valid data from people who were moving too much

since both EDA and BVP are sensitive to movement artifacts. We used accelerometer data to help
us inspect moving periods and remove noisy data. However, we still did notmake full use of motion
data collected from accelerometer and gyroscope sensor. In future work, wewill look into audience
dynamic synchrony frommotion data (e.g., as inWard et al. [102]). There are also alternative meth-
ods to analyze the dataset. Our initial analysis explored the data based on choreographic sections
and elements. Further analysis could investigate the temporal component through autocorrelation
or autoregressive models, quantify the group dynamics and synchronized behaviors [7, 62], and
cluster the audience groups [101]. Future research could introduce alternative ways of obtaining
subjective feedback from the audience to help interpret the physiological reactions such as ques-
tionnaires targeting memorable scenes and debriefing sessions on bodily experience [61, 72].

As a participatory performance, 41 people out of a total of 139 audiencemembers did not sign the
consent forms and so their data had to be destroyed. This would let us reflect on how to organize
the participatory performance considering potential concerns about physiological sensing, such
as privacy and safety of both the audience and dancers. We will further improve the guidelines for
creating interactive performance referring to the instructions regarding improvisations [49] and
participatory interactions [61].

In future, we will continue our work on investigating the feedback loop, translating remote
audience responses, and exploring distributed liveness [103] to try to reconnect the essential invis-
ible link between performers and their audience that has been lost in this era of Covid and online
performance.

8 CONCLUSION

In this article, we report an in the wild study involving performers and public performances.
This article describes our three-year co-design process of creating a novel art performance with
physiological sensing technology as a trigger to affect staging elements, the study to understand
performers and audience’s experience in the wild, and corresponding reflections. For the prac-
tice, we contribute our iterative design considerations regarding choreography, sensing feedback
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considerations, and audience involvement for researchers’ collaboration with performers to cre-
ate novel artifacts and understand audience experience in the wild. For the study, we present a
large-scale dataset to utilize and analyze physiological data from 98 audience members during
the final performance. Compared to recent works on sensing live audiences from multiple sens-
ing aspects (sensing modality, scenario, participants, duration, sensing technology, and collection
methods), we argued the challenges and significance of physiological sensing in the wild. We fur-
ther describe the implementation set up for data collection and the procedures for data analysis.
The exploration of the dataset and collected qualitative feedback enabled us to discover the link
between the audience physiology and the choreographic design. Through this reproducible ap-
proach, we are progressing toward understanding and enhancing the invisible connection between
performers and audience members. We will continue to explore feasible methods and techniques
to collaborate with performers and implement physiological sensing in the wild.

A SUPPLEMENTARY MATERIALS

A.1 Dataset Information

The dataset is consisted of audiencemulti-modal signals (EDA, BVP, wrist acceleration and angular
velocity) over three performances. We have 98 recordings in total (male = 49; female = 49). In
1st performance, we have 34 recordings (male = 17; female = 17). In 2nd performance, we have
31 recordings (male = 13; female = 18). In 3rd performance, we have 33 recordings (male = 19;
female = 14).
By ruling out incomplete or noisy data records, we had 80 (male = 38; female = 42) sets of

data from the recruited participants for the HRV analysis of this project. The breakdown for each
performance was: 1st, 27 (male = 12; female = 15), 2nd, 27 (male = 11; female = 16), and the 3rd, 26
(male = 15; female = 11).

Each data file contains:

— LocalTime: Local timestamp inmilliseconds of the recording server at the time of data packet
arrival to the server. Each packet of samples (approx 400mswindow) is labeledwith the same
local time.

— RemoteTime: Number of milliseconds passed since the recording device was turned on. Each
sample is labeled with the exact time of measurement.

— Label: Labels for syncronization with the video recordings.
— Other columns are data fields with sensor readings

A.2 Audience Questionnaire

The full list of questions in the questionnaire delivered to the audience were as follows:

— How much did you enjoy this performance overall? (Likert scale: “1-not at all”–“9-very
much”)

— Howmuch did you enjoy the visualization/music/lighting/dance? (Likert scale: “1-not at all”
– “9-very much”)

— Compared to other performances, how much did you feel participating in the performance?
(Likert scale: “1-nothing” – “9-strongly”) and Why did you have this feeling? (free-text
answer)

—Which staging elements excited you most? Why did you have this feeling? (single choice:
visualization, music, lighting, and dance)

— Please leave your opinions freely on this performance. (free-text answer)
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A.3 Descriptive Statistics

Table 4 below presents mean and standard deviation values of features we used in the analysis.

Table 4. Descriptive Statistics of HRV and EDA Features Over Six Sections

LF/HF

Mean (SD)

PNN50

Mean (SD)

EDA difference

Mean (SD)

EDA extrema counts

Mean (SD)

Performance 1

Suits .0017 (.0009) .025 (.018) .023 (.096) 4.18 (4.71)

Cards .0019 (.0014) .026 (.021) –.049 (.109) 5.75 (5.23)

Puppet .0018 (.0013) .027 (.017) .026 (.051) 4.29 (2.31)

Romeo .0015 (.0009) .035 (.020) –.231 (.203) 8.20 (5.59)

Growth .0017 (.0011) .037 (.017) .007 (.071) 4.54 (2.06)

Curtain .0019 (.0024) .061 (.023) –.344 (.462) 6.75 (6.24)

Performance 2

Suits .0016 (.0007) .022 (.014) –.020 (.106) 4.00 (3.82)

Cards .0016 (.0008)) .020 (.011) –.058 (.098) 4.13 (3.87)

Puppet .0018 (.0012) .021 (.011) .016 (.065) 3.82 (2.01)

Romeo .0015 (.0007) .031 (.017) –.200 (.234) 5.20 (4.09)

Growth .0014 (.0007) .038 (.015) .037 (.084) 4.85 (2.24)

Curtain .0014 (.0011) .049 (.020) –.193 (.300) 4.25 (3.30)

Performance 3

Suits .0021 (.0012) .015 (.013) .060 (.100) 1.64 (1.75)

Cards .0019 (.0012) .019 (.015) –.012 (.090) 2.88 (1.36)

Puppet .00183 (.0011) .022 (.017) .016 (.039) 2.47 (1.46)

Romeo .0015 (.0007) .035 (.026) –.130 (.207) 3.20 (3.35)

Growth .0015 (.0007) .038 (.019) –.002 (.047) 2.96 (2.58)

Curtain .0012 (.0005) .044 (.025) –.246 (.306) 2.75 (3.10)

A.4 The Schedule of Main Workshops and Key Meetups

The following summarized the schedule of three workshops and key meetups when we were de-
signing the feedback after the test performance:

—Meetup (2019. November): Shared feedback from the test performance and discussed the
sensing feedback design schedule.

—Workshop (2019. December): The iteration started from a workshop where the choreogra-
phy and the main piece—bolero were introduced to the researcher team. Meanwhile, the re-
searcher team prepared the hardware tryouts to help the dancers generate intuitions about
physiological sensing.

—Workshop (2021. January): Discussed the performance choreographic sections’ plan.
—Meetup (2021. January): Recorded sound elements used in the feedback loop. Rehearsed
and adjusted the composed music with sound feedback.

—Workshop (2021. January): Mixed the sound, music, visual, and choreography together.
—Meetup (2021. March): Showed full performance together with all technological set-ups to
the Session house staff.
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