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Abstract. We present a GUI-based C++ toolbox that allows for build-
ing distributed, multi-modal context recognition systems by plugging to-
gether reusable, parameterizable components. The goals of the toolbox
are to simplify the steps from prototypes to online implementations on
low-power mobile devices, facilitate portability between platforms and
foster easy adaptation and extensibility. The main features of the tool-
box we focus on here are a set of parameterizable algorithms including
different filters, feature computations and classifiers, a runtime environ-
ment that supports complex synchronous and asynchronous data flows,
encapsulation of hardware-specific aspects including sensors and data
types (e.g., int vs. float), and the ability to outsource parts of the com-
putation to remote devices. In addition, components are provided for
group-wise, event-based sensor synchronization and data labeling. We
describe the architecture of the toolbox and illustrate its functionality
on two case studies that are part of the downloadable distribution.

1 Introduction

As context awareness gains popularity and moves towards applications, tools for
the efficient implementation of context recognition systems become even more
important. Such tools need to address a broad range of issues from sensor man-
agement middleware through low-level signal processing and pattern recognition
to high-level context modeling and utilization. We focus on the signal processing
and recognition part. Motivated by the needs of two large industrial projects
sponsored by the European Union (WearIT@Work [1] and MyHeart [2]) we have
developed the Context Recognition Network (CRN) Toolbox for development,
prototyping, and implementation of multi-modal, distributed context recogni-
tion systems. The emphasis of the CRN Toolbox is on three issues:

1. simplifying the step from prototyping (often done with tools such as MAT-
LAB) to real life implementation,

2. easy portability between different devices and sensor systems with a partic-
ular focus on low-power mobile devices, and

3. facilitating the reuse of components and easy extensibility/adaptation of
existing recognition systems.
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Problem Description. The design of the CRN Toolbox is based on a system model
that has been studied by our groups on a theoretical level in [3]. We assume a
set of sensors distributed on the user’s body and in the environment, each with
its own data rate and format. A typical context recognition application consists
of a series of filters, feature extractions, and classifications successively applied
to the sensor data. In general, the processing follows a feed-forward hierarchical
data-flow model with initial computations being applied to the data stream of
each single sensor. Then, the individual data streams are successively fused in
joint features and possible partial classifications until, at the final classifier stage,
a decision is made based on all or most of the gathered data.

From previous experience with context recognition and the requirements of
the abovementioned EU projects we have found the following issues to reoccur
in most implementations:

1. Most applications rely on components from a relatively limited set of fil-
ters, features, and classifiers. The differences between the applications are
(1) the specific combination of such components, (2) the data-flow path,
and (3) component-specific parameters such as sliding window sizes, filter
frequencies, and – last but not least – classifier training.

2. In general, system development begins with data collection followed by offline
experiments with rapid development tools like MATLAB or WEKA [4]. In
advance of any online experiments, the algorithms have to be hard- or re-
coded for the specific platform. If problems occur or some sort of adaptation
is required, the whole cycle restarts from the beginning because experiments
tend to be difficult to conduct with optimized production code.

3. Porting complex context recognition tasks to mobile platforms, such as PDAs
or phones, often requires parts of the implementation to be converted from
floating point to integer because of hardware restrictions. In addition, it
might be desirable to outsource the more computation-intensive higher-level
algorithms to a remote server.

4. The synchronization of data from different sensors can be a major problem.
This involves the merging of data streams with different sampling rates,
finding a common start point for all sensors, and compensating for clock
drifts and other sources of jitter to retain synchronization over longer periods
of time.

Paper Contributions. Based on the above considerations, the central idea be-
hind the CRN Toolbox is to provide a development environment offering (1)
a set of parameterizable filter, feature, and classifier components, (2) a run-
time system that controls the required data flow and handles synchronization,
(3) parameterizable sensor interfaces, and (4) an easy-to-use GUI. With this
system, a specific recognition application can be constructed by selecting the
appropriate components from the GUI, specifying the component parameters
and classifier training data, and connecting the components according to the re-
quired data paths. Extension and adaptation of the application are just a matter
of adding/exchanging components in the GUI. Since sensor details are encapsu-
lated in the interfaces, sensor changes are also easy to incorporate (as long as
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the classifiers are not affected). Different parts of the application can be made
to run on different systems using special TCP/IP-based interface components,
enabling the outsourcing of computationally intensive parts to external servers.
Interfaces are also provided for tools like MATLAB and WEKA. By basing all
computations on an abstract ’Value’ data type equipped with arithmetic, any
application may switch between floating point, fixed point, and integer without
any recoding. Finally, special components are provided for group-wise sensor
synchronization through events and for data labeling.

Related Work. Several research groups have already addressed the issue of on-
line sensor data processing and have proposed modular extensible architectures.
However, none of them cover all the problems specific to wearable and ubiquitous
computing.

Sicheneder et al. [5] from the University of Passau presented a framework that
facilitates the graphical specification and execution of complex signal process-
ing applications with focus on industrial monitoring. In contrast to our toolbox,
this framework does not address the specific requirements of wearable comput-
ing environments such as portability between different devices, outsourcing of
computationally expensive tasks, or abstraction from actual data type. Further-
more, there is no explanation or validation of how distributed processing and
synchronization of multiple sources work.

The Lancaster CommonSense ToolKit [6] is a collection of tools that as-
sist in the communication, abstraction, visualization, and processing of sensor
data. CSTK’s core qualities are its real-time facilities and embedded systems-
friendly implementation. However, it does not support a flexible composition of
the processing entities, synchronization, embedding of tools like MATLAB, or
distributed execution which are all key features of the CRN Toolbox and are
needed for most real-world applications.

IU SENSE [7] is a Java-based approach to a toolkit that allows for real-time
processing, visualization, and analysis of data generated by multiple sensors.
Despite its modular and extensible design it is not suited to run on wearable
devices, mainly because of performance issues.

OSIRIS-SE [8], developed at Umit, is the stream-enabled version of the
hyperdatabase infrastructure for process management that was initially devel-
oped at ETH Zurich. It is focused on reliable data-stream processing in
distributed environments where mobile devices interoperate with stationary com-
puters. It utilizes Peer-to-Peer techniques and is implemented in Java. Due to
the overhead coming from the high-level approach, it can only process simple
algorithms on mobile devices and is not able to adapt optimally to different
hardware.

Triana [9] is a GUI-based data analysis tool developed at Cardiff University.
It is written in Java and provides a large library of analysis algorithms mainly
targeted for particle physics, but also useful for other signal processing applica-
tions. Triana is focused on distributed computing using Grid and Peer-to-Peer
techniques. It lacks most of the features specific for the wearable/ubiquitous
environment described above.
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Another well-known tool is the Context Toolkit [10] from Georgia Tech. Un-
like our CRN Toolbox, it focuses on the application level. Thus, we view it as
complementary rather than a competition to our system.

The area of sensor networks and associated middleware contains a lot of
work that could be useful together with or as an extension to our system. The
EU-funded RUNES project [11] is targeted towards flexible distribution of data
processing tasks in heterogeneous sensor networks. The TinyDB [12] lets the sen-
sor network appear as a database which can be queried with an SQL-like syntax.
SensorWare [13] uses mobile agents that can replicate themselves throughout the
network to gain information. With DSWare [14], applications can subscribe for
events that occur on certain groups of sensor nodes.

2 Toolbox Concept and Implementation

The aim of the CRN Toolbox is to allow distributed multi-sensor context recog-
nition to be implemented by simply plugging together standard, parameterizable
components. Thus, with the CRN Toolbox, the implementation of a multi-modal
context recognition system distributed over several platforms consists of:

1. compiling the toolbox for all platforms that it needs to run on,
2. using the GUI to select and configure the algorithms and data flow that the

toolbox needs to execute on each platform, and
3. starting the toolbox on each platform with the configuration files created by

the GUI.

Custom code and extensions are easily added to the toolbox by means of new
classes compiled and linked in with the rest as desired. A detailed description
of the toolbox implementation is beyond the scope of this text. Instead, we
focus on the concepts behind the main features elaborated on in the previous
section: component reusability and parameterization, flexible data flow, handling
of synchronization events, encapsulation of hardware-specific aspects including
sensors and data types (e.g., int vs. float), the ability to run and communicate
across devices, and the configuration GUI. A detailed documentation of the
implementation is contained within the source code.

Parameterizable, Reusable Components. The basic building blocks of the CRN
Toolbox are StreamTasks, or tasks for short. Each algorithm (filter, classifier,
etc.) available in the toolbox is implemented as such a task. The abstract
StreamTask class shown in Figure 1 is based on POSIX threads. It serves as the
superclass for all other tasks. Therefore, each task is a separate thread executing
concurrently. A task has 0 . . . n InPorts and 0 . . .m OutPorts. It continuously
processes the data received at its in-ports and puts the results on its out-ports.

Each task has a number of startup arguments that correspond to the param-
eters of the respective algorithm. The KNN classifier task for instance, requires
KNNs ”k”, the filename of the training data, and an optional step size as its
parameters.
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Fig. 1. Static structure of components

c on f i g u r a t i o n = taskConf connect ionConf [ timeoutConf ] .
taskConf = taskKeyword ”=” ta skL i s t .
connectionConf = connKeyword ”=” connList .
timeoutConf = timeoutKeyword ”=” number .
t a skL i s t = ” [ ” [ taskDef {” ,” taskDef } ] ” ] ” .
taskDef = taskName ”(” [ param {” ,” param} ] ”) ” .
connList = ” [ ” [ connDef {” ,” connDef } ] ” ] ” .
connDef = ”Connection (” number ” ,” number ” ,” number ” ,” number ”) ” .
taskKeyword = ” t ” [ ” a” [ ” s ” [ ” k” [ ” s ” ] ] ] ] .
connKeyword = ”c” [ ” o” [ ” n” [ ” n” [ ” e” [ ” c” [ ” t ” [ ” i ” [ ” o” [ ” n”

[ ” s ” ] ] ] ] ] ] ] ] ] ] .
timeoutKeyword = ” s ” [ ” e” [ ” c” [ ” o” [ ” n” [ ” d” [ ” s ” ] ] ] ] ] ] .
taskName = unquoted .
param = unquoted | quoted .
unquoted = l e t t e r | d i g i t { l e t t e r | d i g i t } .
quoted = ’” ’ { cha rac t e r} ’ ” ’ .
number = d i g i t { d i g i t } .
l e t t e r = ”A” . . ”Z” | ”a” . . ”z ” .
d i g i t = ”0” . . ”9” .
cha rac t e r = ( any ASCII cha rac t e r exc lud ing ” )

Listing 1.1. EBNF definition of the toolbox configuration language

The CRN Toolbox makes use of the Xparam library (http://xparam.sf.net/) for
the de-serialization of objects. This allows the toolbox to be configured by a text file
at runtime. See Listing 1.1 for the syntax definition of the configuration language
in EBNF format. The ’tasks’ section of the configuration file lists the class names
and parameters of the StreamTasks that are instantiated and run in the toolbox.
The connections between these tasks are defined in the ’connections’ section.

Table 1 lists the algorithms currently existing in the toolbox. Customized
algorithms can be added to the toolbox by creating a subclass of StreamTask
and implementing the run() method as shown in Listing 1.2 for a sample task.
The desired number of in- and out-ports must explicitly be allocated by the
task constructor. If multiple in-ports are used, the task itself needs to take care
in the run() method to avoid starvation problems. The InPort class provides
both blocking and non-blocking access methods. For filter algorithms, there is a
dedicated Filter class with a plug-in mechanism to support extended reusability
of code. The Filter task handles packet I/O and calls the filter() method of
the FilterPlugIn for each value. We recommend and prefer to implement filter
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Table 1. List of existing algorithms in the CRN Toolbox

Reader Tasks:
KeyboardReader Keyboard reader task available
MT9Reader Reader for Xsens MT9-B sensors available
XbusRawReader Raw reader for Xsens Xbus available
XSensLogFileReader Reader for Xsens logfiles available
NMEAReader GPS reader task available
ARSBReader A reader for the ARSB available
CricketReader Cricket reader task available
FileReader Generic file reader available
SerialReader Generic serial port reader available
BTnodeReader BTnode reader available
HexamiteReader Hexamite reader available
PhilipsReader Reader for Philips protocol available
RFIDReader Reader task for ID-10 RFID reader testing

Organizing Tasks:
SelectiveSplitterTask Splits a data stream into several streams available
Synchronizer Event based synchronizer available
SyncMerger Synchronizing merger task available
SimpleMerger Simple merger task available
TransitionDetector Transition detector available

Filter Task and Plug-Ins:
FilterTask Configurable filter task available
MaxFilter Max filter plugin for FilterTask available
MeanFilter Mean filter plugin for FilterTask available
MedianFilter Median filter plugin for FilterTask available
VarFilter Variance filter plugin for FilterTask available
SlopeFilter Slope filter plugin for FilterTask available
ScaleFilter Scale filter plugin for FilterTask available
ThresholdFilter A two-thresholds filter testing
FFTFilter FFT filter plugin for FilterTask testing
ASEFilter Average signal energy filter testing
BERFilter Band energy ratio filter testing
BWFilter Bandwidth filter testing
CGFilter Center of gravity filter testing
FlucFilter Fluctuation filter (freq. and time domain) testing
PeakFilter Peak filter testing
SFRFilter Spectral rolloff frequency filter testing

Classifier Tasks:
ClassifierTask Base class for classifier tasks available
KNN KNN classifier available
RangeChecker Very simple classifier available
Hexamite2D Very simple classifier available
Distance2Position Very simple position calculation available
SimpleHexSensClassification Simple Classifier using xsens and hexamite available
SequenceDetector Detects specified sequences testing

Writer Tasks:
TCPWriter Write data to TCP port available
TCPClientWriter Write data to a server via TCP available
SerialWriter Multifunction serial writer available
LoggerTask Data logger task (FileWriter) available
ConsoleWriter Console logger available
PhilipsWriter Philips serial writer available
Nothing Data repeater (e.g. for debugging) available
Nirvana Quiet data sink available

algorithms within such filter plug-ins. Finally, the use of the Xparam library
makes it necessary to implement a copy-constructor for each task and to register
all other constructors with special Xparam macros (not shown in sample code).

Parameterizable Engine with Data-Flow Control. The data streams between
tasks are created by directed connections from out-ports to in-ports. The ac-
cording section of the configuration file specifies the connections between tasks
by indexing their corresponding out- and in-ports. A stream consists of a contin-
uous sequence of DataPackets. The DataPackets, or packets for short, are the
data entities that contain the sampled values belonging to a single time instant.
Each packet bears its own time stamp and sequence number plus a vector of
sampled values represented by the abstract data type Value (see Figure 2). The
elements of this vector may be viewed as channels with equal sampling frequency.
They are passed through the streaming network from task to task along the
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class CustomizedTask : public StreamTask {
public :

CustomizedTask ( Value ∗ o f f s e t ) ;
private :

Value ∗ o f f s e tVa l ;
void run ( ) ;

} ;

CustomizedTask : : CustomizedTask ( Value ∗ o f f s e t ) {
// i n i t i a l i z e parameters
o f f s e tVa l = o f f s e t ;
// c r e a t e as many in− and out−ports as needed
inPorts . push back ( new InPort ( ) ) ;
outPorts . push back ( new OutPort ( ) ) ;

}

void CustomizedTask : : run ( ) {
DataPacket ∗p = NULL;
InPort ∗ inPort = inPorts [ 0 ] ;
OutPort ∗ outPort = outPorts [ 0 ] ;

while ( running ) {
p = inPort−>r e c e i v e ( ) ;
i f ( p ) {

// get the va lue ( s ) from the data packet
Value ∗va l = p−>dataVector . at ( 0 ) ;
// p roc e s s the va lue ( s ) here
l og ( ” p roc e s s i ng the va lue : ” ) << va l ;
∗ va l += o f f s e tV a l ;
// send the modi f i ed packet
outPort−>send ( p ) ;
p = NULL;

}
}

}

Listing 1.2. Sample code for customized tasks

internal connections. Actually, only a pointer is passed around while the object
data itself stays in place for better performance. When multiple receivers are
connected to the same out-port of a task, the packet is cloned. If several streams
need to be merged (e.g., to create a feature vector containing data from multiple
sensors), a special Merger tasks must be used. As described below, Merger tasks
may include synchronization of data streams with different sampling rates.

Synchronization. Ideally, sensors would have an exact clock to timestamp each
data sample with the exact global time. Several methods for network time syn-
chronization exist that are relying on smart sensors. In the real world, however,
we have to cope also with simple sensor devices that send data samples with
either internal sequence numbers or just a specified sampling rate. Therefore,
when working with several sensors, their data streams must be synchronized to
a common starting point. Such synchronization often needs to be repeated at
runtime as the sampling rates are not reliably exact and might be jittered by
communication delays. A well known method for this type of synchronization is
the use of events that occur simultaneously at all involved sensors (e.g., jump-
ing up to synchronize a set of acceleration sensors). Our system supports such
synchronization through Synchronizer and SyncMerger tasks.



106 D. Bannach et al.

+clone() : DataPacket

+timestamp : struct timeval

+dataVector : vector<Value>

+seqNr : unsigned short

DataPacket

+getInt() : int

+getFloat() : float

+getFix() : fix

+setVal(in val : int) : void

+operator+=(in v : Value) : Value

+operator-=(in v : Value) : Value

+operator*=(in v : Value) : Value

+operator/=(in v : Value) : Value

+sqrt() : Value

+log2() : Value

+exp2() : Value

+exp() : Value

+sin() : Value

+cos() : Value

+tan() : Value

+asin() : Value

+acos() : Value

+atan() : Value

+operator<(in v : Value) : bool

+operator>(in v : Value) : bool

+operator==(in v : Value) : bool

+operator!=(in v : Value) : bool

+operator<=(in v : Value) : bool

+operator>=(in v : Value) : bool

-valid : bool

Value

-val : int

IntValue

-val : float

FloatValue

1*

-val : fix

FixValue

-val : int

-n : int

EnumValue

Fig. 2. Static structure of data packets

An example of such synchronization is shown in Figure 3. The Synchro-
nizer searches for a distinct event1 in the data received on the first in-port. The
search is limited to a specified time-window which is triggered by a non-zero
value on the second in-port. The time stamp te of the event is stored by the
Synchronizer. The Synchronizer subtracts te from the time stamp of every
data packet received later on. Hence, the time stamps of packets on the out-port
will be relative to the event: tout = tin − te. Data streams synchronized this way
can then be easily merged according to the time stamp to form one synchronized
stream. The SyncMerger task merges two data streams that are synchronized to
the same event. Packets on the second in-port are merged to matching packets
from the first in-port. The matching criteria is the time stamp difference with
a tolerance threshold. The data rate from the first in-port is maintained on the
out-port, i.e., no packet from the first in-port is discarded. If the data packet
Pa on the first in-port is older than the next available packet Pb at the second
in-port (i.e., ta < (tb − ttolerance)), packet Pa is merged with a cached copy of
the last packet from the second in-port to maintain the data rate. The copied
values will be marked invalid. Otherwise, if Pb is older than Pa, Pb is discarded
and merging continues with the next packet from the second in-port. The signals
in Figure 3 stem from two MT9 acceleration sensors as configured in the GUI.

1 We apply a variance filter with a sliding window of size 2 and take the maximal
value as ’event’.
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Fig. 3. Display of Sync event

Both sensors are moved at the same time but the signals are not synchronized at
the beginning. After a short synchronization period, triggered by pressing a key,
the toolbox is able to adjust the timestamps and merge the streams accordingly.

Sensor Hardware Encapsulation. Sensor interfaces are implemented as tasks with
no in-ports and are called Reader tasks. They create a DataPacket for new
sampling data as acquired from sensors (or other sources) and provide it on
their out-ports. Our architecture supports multiple implementations of reader
tasks that read from different sensors or even from other sources of information
(e.g., web pages, other applications, files, etc.). We use a keyboard reader for
online labeling of sensor data.

Data Type Encapsulation. The sampled values contained within data packets
are all of the abstract data type Value. All mathematical operations and ac-
cess methods are declared in the abstract Value class (see Figure 2). They are
coded in the subclasses of Value. This allows algorithms to be implemented
completely independent of the actual sampling data type when using the generic
interface of the Value class. Such algorithms can process floating-point values
on one machine and integer values on another without any recoding. The data
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type of each stream (or even channel) can be configured to optimally match the
needs of the application and the specific characteristics of the device the tool-
box runs on. Implementations of the Value class exist for integer (IntValue),
floating-point (FloatValue), and fixpoint (FixValue) values. Moreover, there is
an enumeration value (EnumValue) for representing class labels and a raw value
(ByteBufValue) for transportation of raw buffers. For performance reasons, the
Value classes only provide mathematical operations that directly modify
the object as, for instance, the operator ’+=’ does.

Distributed Execution and Tools Encapsulation. The key to distributed execution
and the usage of external tools such as MATLAB are Writer tasks. They send
the data received at their in-ports to external devices instead of an out-port.
Such external devices can be files or displays but also network connections.
For the latter, we currently use TCPWriter tasks that are based on TCP/IP
sockets. Such tasks can send DataPackets in a serialized form to corresponding
TCPReader tasks over the network. The serialization of data packets is done by
an Encoder plug-in in the TCPWriter. Similarly, the TCPReader uses a Decoder
plug-in for de-serialization. Thus, two toolboxes running on different machines
can work as a single toolbox using a TCPWriter to transport DataPackets. In a
similar way, the toolbox can communicate with any other program augmented
by TCPReader/Writer compatible interfaces. Currently, such interfaces exist for
MATLAB and WEKA.

GUI. We implemented a graphical editor (see Figure 3) for easy configuration of
the toolbox. Tasks may be dragged from a library into the workspace where they
are connected to other tasks with just a few mouse clicks. The editor is written in
Java and automatically produces the configuration files for the toolbox according
to the language definition shown in Listing 1.1.

3 Case Studies

Although still being work in progress, we already use the CRN Toolbox for in the
WearIT@Work and MyHeart projects as well as in a variety of student works
and demonstrators. The toolbox code including different sample applications
can be downloaded from http://csn.umit.at/download/toolbox/. This sec-
tion provides two case studies that show how to apply our toolbox to context
recognition problems. The first is based on the demonstrators included in the
software distribution. The second is a real-life example from the WearIT@Work
project. The examples illustrate how distributed multi-modal context recogni-
tion systems can incrementally be constructed and adapted with the help of the
CRN Toolbox.

3.1 Assembly Activity Recognition

We begin this case study with an explanation of how to use the toolbox to gather
and save experimental data from a sensor. The real-time sensor data from an
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Fig. 4. Toolbox application schematics and MATLAB script reading sensor data

Xsens MT9 motion sensor is labeled by hand using a keyboard during the exper-
imental trials. The sensor is mounted on the back of the user’s hand. This setup
resembles an initial stage in the development of an assembly activity recognition
system for the WearIT@Work project. As shown in Figure 4a, the configura-
tion consists of a Reader for the MT9 sensor, a KeyboardReader for labeling,
a SimpleMerger, and a FileWriter, all executed on the wearable device. The
MT9Reader acquires the data from the sensor while the experiment conductor
can operate the keyboard and label the user’s actions accordingly. The labels for
the demonstrator included in the downloadable distribution mark the following
activities: to hammer, to screw drive, to sandpaper, and to saw. The Simple-
Merger, in turn, combines the sensor data with the labels and pipes them to the
FileWriter which logs the labeled data to a file. In the same manner as the rest
of the case study, this happens in perceived real-time.

In the next stage, the system is extended to include feature extraction using
scaling (ScaleFilter) and a variance filter (VarFilter) on the signal processing
side. Another component changed is the TCPWriter instead of the FileWriter
to transmit the data to a remote server (see Figure 4b). The remote computer
runs a MATLAB visualization application and/or our SensServe interface to the
WEKA machine-learning software extended by a toolbox-compatible TCPReader
module. Thus, the labeled data is forwarded to both applications. The MATLAB
visualization application is able to display the sensor data in perceived real-time.
This is a fast and easy way to ensure the correct operation of the sensors. It also
proves to be a valuable help to get a first glimpse on characteristic features of the
context recognition tasks. The SensServe interface can either be used to train a
classifier or to do online tests and demonstrations. Naturally, as it interfaces to
WEKA, it provides access to all classifiers and analysis algorithms implemented
by this machine learning library. This eases the search for suitable features and
classifiers dependent on the inference task.

Once the experimental stage of development is finished, the classification
is moved from the server to a toolbox KNN classification component able to
run on the mobile device. An already trained version of the toolbox KNN
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classifier for the previously defined activities is included in the downloadable
distribution. As the classifier runs on the mobile device, the TCPWriter can
also be used to provide only the classification output to other external applica-
tions (e.g., a video capture application that may label the user video with his
activities).

The third stage of the case study adds Hexamite ultrasonic sensors for hand
tracking (see Figure 4c). To this end, a HexamiteReader and the module Hex-
amite2D for position computations are added while the classifier is trained to
utilize position data. One ultrasonic listener is mounted on the user’s same arm
as the MT9 sensor. Disregarding height, two dimensions suffice for the position
data because height is not crucial for the activities we defined above. Thus, the
system is now able to differentiate between where in the room a specific activity
is performed. This in turn can be used to determine regions of interest or to
improve the activity recognition rate as certain activities happen at a specific
places only. The analysis and training is done using WEKA in a setup similar
to Figure 4b. The training can also be done on the mobile device. Finally, the
trained classifier running on the mobile device transmits the resulting classifica-
tions using the TCPWriter to a desktop machine. The desktop simply visualizes
the results.

To underline the flexibility of the toolbox, the Hexamite sensors may be re-
placed by Cricket ultrasonic sensors with hardly any effort. The operation of
both sensors is very similar. We only had to write a CricketReader that out-
puts the data in the same format as the HexamiteReader, and insert it into
the system using our GUI. This underlines that sensors with similar outputs
can easily be interchanged by only using different readers in the toolbox and by
adapting some filter parameters. The CRN Toolbox also supports readers with
several output formats to enhance reuse. For example, the MT9Reader can either
provide raw (int) or calibrated (float) data. Any application using the MT9 ac-
celerometer data can easily be adjusted to use other accelerometers, simply by
adding appropriate readers.

For systems with no sensors attached, the toolbox offers a FileReader. The
FileReader reads previously recorded sensor data from a file and sends it to
other components of the system in the same way as if the data originated from a
real sensor. Thus, it is possible to re-run any experiment in real-time to fine-tune
the toolbox components or debug a more complex application.

3.2 Gesture Recognition for Controlling a Document Browser

As mentioned before, the toolbox is currently used in the WearIT@Work project.
One scenario in this project takes place during a doctor’s ward round in a hospi-
tal. One problem of the ward round is the extremely limited time available per
patient. Accessing each patient’s documents on-site is important but operating
a computer or PDA tends to be time-consuming and distracting. In the solu-
tion investigated in the WearIT@Work project, we apply context- and gesture
recognition to automate and simplify the access to the patient’s documents. The
doctor is equipped with a QBIC [15] wearable computer, and an MT9 motion



Distributed Modular Toolbox for Multi-modal Context Recognition 111

MT9Reader

TCPWriter

SelectiveSplitter

ThresholdFilter ThresholdFilter ThresholdFilter

TransitionDetector TransitionDetector TransitionDetector

SequenceDetector

CommandDispatcher

SequenceDetector SequenceDetector

gyro_x gyro_y gyro_z

[0,1] [2,3] [4,5]

[2,3,4,5]

Fig. 5. Toolbox configuration for the gesture recognition

sensor plus an RFID reader at the right arm. The patient wears an RFID tag and
the nurse carries a PDA. At each patient’s bed, there is a bed-side monitor to
display documents from the hospital database system. The QBIC connects wire-
lessly to both the PDA and the bed-side system. When the doctor approaches
the patient’s bed, the bed-side monitor automatically shows the specific patients
list of documents. The doctor can then browse these documents by pointing at
the monitor and swivel the forearm up and down or left and right. The following
gestures are defined:

Forearm Gesture Command
swivel up, then down scroll up
swivel down, then up scroll down
swivel left, then right open document
swivel right, then left close document
roll right, then left activate gesture recognition
roll left, then right deactivate gesture recognition

In the following, we briefly describe how the CRN Toolbox is extended with only
three simple classes to deal with this gesture recognition and the controlling of
the document browser. The configuration is shown in Figure 5. We use the 3–axis
gyroscope of the MT9 motion sensor to detect the swiveling and rolling of the
forearm. The x–axis of the gyroscope is aligned in parallel to the main axis of the
forearm, and the y–axis in parallel to the plane of the hand. Rolling the forearm
leads to either a positive or negative deviation of the angular velocity on the
x–axis, depending on the roll direction. Similarly, swivel left/right is measured
on the y–axis and swivel up/down on the z–axis.

We implemented a ThresholdFilter by extending the FilterPlugin class.
The ThresholdFilter has two thresholds. All values greater than the upper
threshold are set to 1, all value less than the lower threshold are set to 2, and
all others are set to 0. With the appropriate thresholds, this filter applied to the
x–axis gyroscope signal will output a sequence of values similar to

. . . 0000001111111100022222222200000 . . .
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when rolling the hand and forearm to the right and then back immediately. Then,
we apply the existing TransitionDetector task and get the sequence below.

. . . 01020 . . .

The TransitionDetector allows for skipping sequences of equal values shorter
than a specified length. Setting this parameter to 4, we get the following sequence
instead.

. . . 0120 . . .

Now, we only need to identify exactly this simple sequence in the filtered data
stream in order to tell that the activate-gesture has been executed. Similarly, all
other gestures can be recognized. Therefore, we implemented the SequenceDe-
tector task which accepts a list of value-sequences as its parameter. If one such
sequence is detected in the data stream, the SequenceDetector sends the index
of that sequence on the out-port. We apply these three algorithms on every axis
of the gyroscope in parallel. We insert pseudo-sequences that never occur (e.g.,
[-1]) in the parameters passed to the SequenceDetector for the y- and z–axis
to ensure that every gesture is assigned a unique index value.

The third class that had to be implemented for this scenario is the Command-
Dispatcher task. It simply forwards the gesture indices to its out-port if in
active state and discards them otherwise. The state is set by the activate- and
deactivate commands. This task is actually extended (but not shown here)
with additional in- and out-ports to support RFID input and wireless connec-
tivity to the nurse’s PDA. The output of this task is sent to a TCPClientWriter
that connects to the document browser of the hospital database system. The
document browser can interprete the commands like real mouse and keyboard
input.

4 Conclusion and Future Work

The CRN Toolbox is currently used in different projects. At the same time it is
still evolving. In addition to the implementation of further components, the main
directions are support for dynamic (re-) configuration of applications at runtime
including ad-hoc cooperation between devices and better support for resource
management. The later will include the back propagation of control messages
through the processing network. Another immediate improvement of the CRN
Toolbox that goes along with (re-) configuration is to provide a tighter coupling
between runtime and GUI than just over configuration files. Furthermore, we
envision extensions for ad-hoc cooperation of multiple toolboxes and a meta-
model for sensors and context information.
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