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Wordometer Systems for Everyday Life

OLIVIER AUGEREAU, CHARLES LIMA SANCHES, and KOICHI KISE, Osaka Prefecture University
KAI KUNZE, Keio University

We present in this paper a detailed comparison of different algorithms and devices to determine the number of words

read in everyday life. We call our system the “Wordometer”. We used three kinds of eye tracking systems in our

experiment: mobile video-oculography (MVoG); stationary video-oculography (SVoG); and electro-oculography (EoG). By

analyzing the movement of the eyes we were able to estimate the number of words that a user read. Recently, inexpensive eye

trackers have appeared on the market. Thus, we undertook a large-scale experiment that compared three devices that can be

used for daily reading on a screen: the Tobii Eye X SVoG; the JINS MEME EoG; and the Pupil MVoG. We found that the

accuracy of the everyday life devices and professional devices was similar when used with the Wordometer. We analyzed

the robustness of the systems for special reading behaviors: rereading and skipping.

With the MVoG, SVoG and EoG systems, we obtained estimation errors respectively, 7.2%, 13.0%, and 10.6% in our main

experiment. In all our experiments, we obtained 300 recordings by 14 participants, which amounted to 109,097 read words.
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1 INTRODUCTION

Recording knowledge and experiences has been always essential for humans. With lifelogging and quantified

self movements, more and more of this recording can be automated [1, 2]. So far, logging has focused mostly

on physical activities such as step counting and food intake [3, 4]. However, there is also a gradual movement

toward logging states of the mind, e.g. sleep quality and alertness [5, 6]. In this paper, we deal with a specific

mind activity: reading. We aimed to quantify how many words a user reads. Reading is one of the most important

cognitive activities in everyday life. Indeed, it has been demonstrated that critical thinking skills and general

knowledge are linked to the amount people read every day [7]. That is why in this study, we chose to focus on

analyzing reading activity and—more specifically—to quantify it.

This research was conducted in the context of the “reading-life log” [8]. The aim of the reading-life log is to

record and analyze everyday reading life. By combining eye tracking with the content of what is read (i.e., what
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is displayed on a screen) it is possible to record which words are read in conjunction with a time stamp. With

this information, many applications are possible: producing a summary about what is read in a day; producing a

system to investigate what has previously been read; computing statistics about the kind of documents read; how

much is read; how fast a language is read; and which new words are read in a day.

Counting the number of words read has previously been proposed [9, 10]; however, the evaluations were

conducted either using professional eye trackers or in a laboratory setting and with small datasets. No study

has focused on analyzing reading activity in everyday life, and no device currently available on the market is

able to measure such activity. To bring research closer to real-life conditions, we propose in this paper a system

for monitoring reading activity and estimating the number of words read using several devices and evaluation

methods.

Compared with previous work, the main contributions of this study may be summarized as follows:

(1) we built a large dataset of reading activity representing around 100,000 read words using five eye trackers

(section 5.1);

(2) we propose and test a new evaluation model (document and user independent) that is appropriate for

application in everyday life;

(3) we demonstrate the usability of inexpensive eye trackers by obtaining an approximate average of 11%

error of estimation (section 5.1);

(4) we test the Wordometer systems against complex reading patterns, such as skipping and rereading

(section 5.3), and we show that current Wordometer systems are robust to rereading but not skipping.

As noted above, our intention is not to propose another variant of the Wordometer. We aimed to evaluate

extensively existing Wordometer systems under various conditions to determine whether the Wordometer may

be usefully applied in everyday life.

We used three different devices for our large-scale experiment: one stationary video-oculography (SVoG)

system; one mobile video-oculography (MVoG) system; and one electro-oculography (EoG) system. These eye

trackers are non-professional systems that may be use in “everyday life situations”. They are less expensive but

also less accurate than professional eye trackers; thus, the algorithms for the Wordometer have to be designed

carefully. Our second experiment focused on analyzing the performance of the Wordometer with complex reading

patterns; that is quite important in assessing the application of the Wordometer in real-life conditions. Altogether,

we used five devices are used: two SVoGs, two MVoGs and one EoG. In total, 14 users participated in all the

experiments, producing 300 recordings which amounted to 109,097 read words.

2 FUNDAMENTAL NOTIONS ABOUT EYE MOVEMENT IN READING AND WORDOMETER
SYSTEMS

To allow a proper understanding of related work studies in full detail, we present in this section a few basic

concepts about eye gaze analysis.

When a person reads, the eyes have very specific movements. They do not move continuously along a line

of text but stop at certain points to process the information from the text (called a fixation) and then jump to

another position (called a saccade) [11]. Because of the shape of the parafovea, the horizontal perceptual span is

greater than a short word; thus, some words can be guessed and skipped (and have no fixation) while reading.

Conversely, some long words can have multiple fixations. After the reader reaches the end of a text line, a large

backward saccade going to the next line can be observed; this corresponds to what we call a line break.

The principle of all Wordometer systems is based on the three following steps: (1) processing the signal from

the eye tracker; (2) extracting features from the eye movement; and (3) applying machine learning to estimate

the number of read words.
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Table 1. Three evaluation models used to test the Wordometer. If the learning is user dependent, it cannot be document

dependent: the participants never read the same document twice in state-of-the-art (and our) experiments.

����������Document

User
Dependent Independent

Dependent No Yes

Independent Yes Yes

Machine learning algorithms use a dataset for learning which can be defined in various ways. As shown in

Table 1, three different evaluation models can be used to test the performances of the Wordometer:

• User and document independent: to determine the number of read words from the recording of one

participant, all recordings of other participants reading different documents are employed.

• User dependent and document independent: the estimation is based on the other recordings of the same

participant.

• User independent and document dependent: the estimation is based on all recordings of all other

participants (including ones reading the same document and other documents).

Depending on the application and context, different learning methods are appropriate. With a “cold start”, no

other recordings from the same participant are available; thus, only a user-independent approach can be adopted.

If we are considering a group of learners reading the same documents, a document-dependent approach can be

applied. Finally, if the reader uses the system for a long time, a user-dependent approach can be employed, and it

will better fit the person’s behavior.

The performances of the systems are mainly computed in three ways: the average error per recording, A; the
weighted average error per recordingsW ; and the average accumulated error per reader C . The weight used to

compute the weighted average is the number of words contained in a document. In our evaluation, the average is

always weighted; however, it is not always clear with state-of-the-art whether the error was weighted. A andW
are based on the absolute value of error but C is based on the value of error, which can be positive or negative,

depending on whether the number of words was over-estimated or under-estimated (details in section 5.1.4). C is

used to show the behavior of the prediction for a long recording of one participant; it tends to decrease since the

errors compensate one an other over time.

Let Epd be the error of participant p reading document d , P the number of participants, Dp the number of

documents read by participant p, and Nd the number of words of document d . The three measures A,W , and C
are defined as follows:

A =

∑P
p=1

∑Dp

d=1
|Epd |

Dp

P
,

W =

∑P
p=1

∑Dp

d=1
|Epd |×Nd∑Dp

d=1
Nd

P
,

C =

∑P
p=1

∑Dp

d=1
Epd×Nd∑Dp

d=1
Nd

P
.

It is evident that in our definition, C is also weighted by the number of words in the documents. However, it is

unclear if that is the case in the state-of-the-art systems.
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3 RELATED WORK

First, we present research related to the general topic of eye movement and reading analysis. Then, we present

previous studies about Wordometer systems and their limits.

3.1 Eye movement and reading analysis

Three main technologies are commonly used to analyze the movement of the eyes: eye-attached tracking, such as

scleral search coils (SSC), electro-oculography (EoG), and video-oculography (VoG).

SSC is regarded as a gold standard for recording accurate data of eye movements in terms of resolution,

accuracy, low noise and fast response [12]. But it is the least usable in everyday life condition: the subject needs

a topical anesthetic for insertion of the SSC in the eye, and a magnetic frame is placed around the subject.

EoG has been especially used for human-computer interaction [13] and activity recognition [14]. The data

recorded with the EoG are not very accurate and tend to be noisier than with other approaches: facial muscles

and head movements interfere with the eye movement signal [15]. Thus, EoG systems have not been commonly

used for reading analysis except for a few exceptions such as Kunze et al. [16] and Ishimaru et al. [10].

VoG is one of the most popular eye tracking technologies. There are two types of VoG: mobile ones (MVoG),

which are head mounted, and stationary ones (SVoG), which are usually attached beneath a computer screen.

Several applications have been developed for such applications as activity recognition [17, 18], detecting user

interest [19], and biometric identification [20].

Further, VoG is the main system used for reading analysis and extracting information about readers and docu-

ments. From the reader’s perspective, some applications concern determining the reader’s comprehension [21],

English ability [22], and the TOEIC (Test of English for International Communication) score [23]. From the text

perspective, the eye gaze can be used to assess the quality of a text [24] and categorize documents [25] in addition

to other applications. Some studies have focused on specific types of documents, such as sheet music [26, 27] and

comics [28].

Eye movement while reading was analyzed by Rayner around 40 years ago [29]. Informative features about

fixations and saccades are extracted from the eye tracker signal to analyze the reading behavior.

3.2 Existing Wordometer systems

In this section we present the three main existing Wordometer systems.

The first publication about the Wordometern by Kunze et al., appeared in 2013 [9]. The authors used the SMI

mobile eye tracker1 (MVoG). The world camera of the mobile eye tracker is used for document image retrieval and

correcting the 3D perspective transformation. In the experiment by Kunze et al., nine subjects read 10 documents

each. The 90 recordings represented a total of 27,930 words read. For each recording, five features were extracted:

the duration required for reading, number of fixations, total distance of eye movements, total distance of saccades,

and average distance of saccades. The evaluation model tested by the authors was user independent but not

document independent. In order to estimate the number of read words of the recordings of one participant, all

the recordings of all other participants were used to build a support vector regression model. The drawback of

not using a document-independent model is that to determine the number of read words in a document, some

other people must have read the same document; that is not so probable in real-life conditions. Then, the errors in

each document are totaled, which compensates for the under-estimation and over-estimation of some recordings.

Finally, according to the Kunze et al., they obtained an average error of 8.2% for each participant. The details of

their were provided, and we computed the weighted average error per recording; we obtained an error of 14.6%.

In 2015, Kunze et al. [16] presented an updated version of the Wordometer. That time, the number of read words

was estimated directly from the eye gaze data recorded by the mobile eye tracker (without using the recorded

1http://www.eyetracking-glasses.com/
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image of the document from the scene camera); the authors used a medical EoG and a prototype version of a

commercial EoG called JINS MEME2. Kunze et al. conducted four experiments in that study. The first involved

reading from paper with a mobile eye tracker; 14 documents were read by nine subjects. Three of the five features

from the previous study are different. In this study, the features employed were as follow: total time reading, sum

of all saccade distance, sum of the line break saccade distances, number of line breaks, and sum of the reading

saccade distances. The authors used a similar approach as in their previous study (user independent, document

dependent, support vector regression), and obtained an 8% error for each participant. The authors did not provide

complete details, and so we cannot compute the weighted average error per recording. The second experiment

involved reading from several screens of different sizes (e.g., e-ink reader, smartphone). Five documents were read

by 10 subjects. The average error using the same approach was 17%. Kunze et al. considered that the error was

largefi?!especially when the participants had very long reading lines or when they moved their heads excessively.

The third experiment was the same as the second except that a medical EoG was used. In that experiment, eight

participants read five documents. The authors obtained an average error of 5%. The fourth experiment was

undertaken with JINS MEME and four participants. Unfortunately, the number of documents and read word was

not detailed in the paper. The authors obtained an average error of 20%.

More recently, Ishimaru et al. introduced the Wordometer 2.0 based on JINS MEME [10]. Five participants read

38 paragraphs which amounted to 190 read paragraphs or approximately 10,000 read words. Four features were

extracted from the EoG signal: total number of forward saccades, mean EoG signal value of forward saccades,

total number of backward saccades, and mean EoG signal value of backward saccades. Those features were then

inputted into a support vector regression algorithm to predict the number of read words. An average error of 18%

per paragraph was obtained in a user-independent (but not document-independent) approach.

3.3 Limitations of the state-of-the-art systems

Hitherto, only three devices have been used to apply the Wordometer: the SMI mobile eye tracker (MVoG); a

medical EoG; and a prototype version of the JINSMEME (EoG).That prototypewas used in previous studies [10, 16]

works at 11Hz, and is based on different hardware from what we used. That device is not commercially available;

thus, we decided to use the Academic version; that is commercially available3, but it works differently (sampling

rate, 100Hz).

In our experiments, we used five eye tracking systems including the three following systems that have not yet

been used: Tobii Eye X4 (SVoG), SMI RED2505 (SVoG), and Pupil6 (MVoG), and a new version of JINS MEME

(EoG).

Only two state-of-the-art models have thus far been evaluated: user-dependent and document-independent

learning; and user-independent and document-dependent learning. In the present study, we investigated another

evaluation model, which is relevant to real-life usage: user-independent and document-independent learning.

This method corresponds to the situation where the document read by other readers and used as a learning

dataset is different from the document used as a test; that situation is likely to occur in real-life conditions.

To summarize, the main differences with previous studies are as follows: the focus on using inexpensive eye

trackers; the creation of a large dataset; the proposition of a new evaluation model; and the test against complex

reading patterns.

2https://jins-meme.com/en/
3https://jins-meme.com/en/academic/
4https://tobiigaming.com/
5http://www.smivision.com/en/gaze-and-eye-tracking-systems/products/red250-red-500.html
6https://pupil-labs.com/pupil/
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(a) Tobii Eye X stationary eye tracker, one of the most inex-

pensive eye trackers on the market.

(b) SMI Red 250 stationary eye tracker with high frequency

and accuracy.

Fig. 1. The two stationary eye trackers (SVoG) used for our experiments.

We would like to point out that the proposed Wordometer systems are based on the previous work [10, 16].

We directly used those algorithms but made minor changes to optimize the performance with the current data

and devices. We will not compare our results with the previous algorithms since they give slightly worse results.

4 PROPOSED WORDOMETER SYSTEMS

In this section we present the five devices used in our experiments.and the corresponding algorithms to determine

the number of read words. An essential part of the Wordometer algorithm involves identifying and quantifying

the fixation and saccade features. The general framework is similar to the Wordometer related studies [9, 10, 16];

however, we made minor changes such as changing the filtering and adapting some features to optimize the

performances for everyday life eye trackers.

We provide explanations of the systems, including the minor changes, in the following sections.

4.1 Stationary video-oculography

The stationary eye tracker is attached beneath a computer screen, as illustrated in Fig. 1. The raw eye gaze

positions and time stamp are recorded by the system while the user is reading on the screen.

With our system, the Wordometer algorithm comprises the following four main steps:

(1) detecting fixations and saccades;

(2) detecting line breaks;

(3) extracting features;

(4) applying a regression.

Detecting fixations and saccades. The raw signal is processed using the algorithm of Buscher et al. [30]: when

the eye gazes are concentrated on a small area for a sufficient time, a fixation is detected. The rapid eye movement

between two fixations is represented as a saccade. Figure 2 shows an example of fixations and saccades based on

Tobii Eye X raw data.

Detecting line breaks. The sequence of fixations and saccades is processed to determine line breaks, which

correspond to a large eye gaze regression: when the reader goes back from the end of one text line to the

beginning of the next. The number of line breaks can differ from the number of text lines if the reader rereads or

skips some parts of the text.
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To identify the line breaks, we first merged the consecutive backward saccades. This step helped differentiate

between small backward saccades (corresponding to rereading a word or noisy saccades) and long backward

saccades (corresponding to a line break).

We the computed the average length of all the backward saccades. We experimentally fixed a threshold α ; a
backward saccade was detected as a line break if its length B validated the corresponding condition:

B > α ×

N∑
i=1

Bi ,

where N is the number of saccades.

Extracting features. We extracted five features are extracted for each recording:

• total reading time;

• sum of line break saccade distances;

• sum of all saccade distances (without the line breaks);

• number of line breaks;

• number of fixations.

We computed a saccade distance as the distance between two fixations. The large regressive saccades detected

as line breaks are counted separately. These features are partially based on those introduced in [9, 16].

Applying a regression model. We attempted to predict the number of read words as the number of words

contained in the text we asked a participant to read. Thus, for each reading session, we used the number of words

the text contained as the ground truth even if there were slight differences with that number (for example if the

reader skipped or involuntarily reread a few words). However, participants were asked to follow one of three

specific scenarios: (1) no rereading or skipping any part of the text; (2) reread a given paragraph; and (3) skip a

given paragraph. Accordingly, in each case, we knew the number of words the participants were supposed to

have read, which we used as the ground truth.

We used the five previously extracted features as the input for a SVR (Support Vector Regression) model. We

employed three different evaluation models, as detailed in section 2. We determined the number of read words in

one recording based on the recordings used as learning data.

Fig. 2. Example of data obtained after processing the Tobii Eye X raw data with the Buscher et al. [30] algorithm. The blue

circles represent fixations. The diameter of the circles indicates the duration of the fixations. The lines between the circles

represent saccades. The last fixations before a line break are colored red.
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(a) SMI mobile eye tracker, a professional eye

tracker.

(b) Pupil mobile eye tracker, an open source and

inexpensive device.

(c) Image recorded and processed by the eye cam-

eras of the Pupil eye tracker on a European partic-

ipant.

Fig. 3. The two MVoG eye trackers used in the experiments: SMI mobile and Pupil.

4.2 Mobile video-oculography

The mobile eye tracker is a headset comprising three cameras: two record each eye; one front camera (also called

the scene or world camera) records the scene. The two MVoGs that we used appear in Fig. 3: the SMI and Pupil

mobile eye trackers.

The algorithm of the Wordometer is very similar to that used for SVoG. But the Buscher et al. fixation and

saccade algorithm does not perform optimally with a mobile eye tracker. The fixed-size area used for detecting

fixations is defined in the screen coordinates; but the mobile eye tracker records fixations in the scene image

coordinates, as shown in Fig. 4. The screen displaying the text is included in that image; thus, its size changes

depending on whether the participant is closer or farther from the screen. Accordingly, we used another algorithm

based on gaze dispersion to detect the fixations and saccades [31]. The code is open source and available on

GitHub7.

After extracting the fixations and saccades, the next parts were exactly the same as for the SVoG. First, we

tried to detect the line breaks. To do so, we merged the consecutive backward saccades. Then, if a backward

saccade was longer than a fixed threshold α , a line break was detected. We used the same five features as for the

SVoG: total time reading; sum of line break saccade distances; sum of all saccade distances, number of line breaks,

and number of fixations. We then applied a regression model to determine the number of read words based on

these features.

7https://github.com/pupil-labs/pupil/blob/master/pupil src/shared modules/fixation detector.py
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Fig. 4. Image recorded by the world camera, representing what the user sees. The fixations appear in green and the saccades

in pink. The image is used for illustration but is not used by the algorithm.

(a) JINS MEME glasses. (b) JINS MEME glasses as worn by a user.

Fig. 5. JINS MEME glasses with EoG sensors.

4.3 Electro-oculography

The EoG system we used comprised three electrodes included in the frame of the glasses. The glasses are depicted

in Fig. 5. We used the Academic version of JINS MEME, which is commercially available.

EoG involves measuring the potential between the front and back of the eye. When the eye is moving, the

electrodes measure the potential which is proportional to the angle.

The main steps of the Wordometer are the same as for SVoG. However, the signal processing and features are

different since the signal is of a different nature (Fig. 6).

First, we applied a Butterworth filter to smooth the signal. Then, we processed the signal with a 3-second

window. If the standard deviation of the windows was four times greater than the standard deviation of the whole

signal, the window was regarded as too noisy and ignored in the next part of the algorithm. Some recordings

8https://github.com/jins-meme/ap-datalogger-for-windows
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Fig. 6. Example of an electro-oculogram extracted using the JINS MEME Data logger software8. Two large backward saccades

representing line breaks are evident. Several small forward saccades are also visible.

contained too much noise: they were entirely removed from the experiment dataset and not included in the

results.

We extracted the same four features as the authors of [10]. All the local maximum values were detected

and considered to be forward saccades. We defined two features made from the number of local maxima and

average value of the maxima. The large backward saccades representing the line breaks were detected as the

local minimum values; they were lower than an experimentally defined threshold. For better performance, we set

the threshold in a different manner than in [10]. In a 1-second window, a local minimum is detected as a large

backward saccade if:

L < A − 3 × S,

where L is the value of a local minimum, A is the average value of the window, and S is the standard deviation of

the window. This is done to accept only the large regressions that correspond to line breaks. Then, two other

features are extracted: the number of minima and average value of the minima. Among these four features, we

found that the two first ones were not very relevant. The signal of the EoG was slightly noisy; thus, it was very

difficult to distinguish the small forward saccade from the noise. These results were improved by using only the

last two features which are more robust (based on the large backward saccades).

5 EXPERIMENTS

In the first experiment, we estimated the number of read words by the participants reading a text displayed on

a screen, using the everyday life eye tracking systems: Tobii Eye X, Pupil, and JINS MEME Academic version

(which gives access to raw signals with a sampling frequency of 100 Hz). We experimentally fixed the threshold

to detect the line break at: α = 0.75. After presenting the main experiment results in section 5.1, we will detail

the main causes of error for the Wordometer system in section 5.2.

In section 5.3, we analyze the robustness of the Wordometer with respect to special reading behaviors, such as

rereading and skipping: that is important in approximating real-life conditions.

The documents used in all experiments were extracted from the website Newsela 9. That website provides

news with different grades of English difficulty. We selected texts with different English levels that would be

9https://newsela.com/
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appropriate for our the readers: not too easy and not too difficult for undergraduate or graduate non-native

English speakers.

In all experiments and with all devices, the participants were free to move their heads and bodies and to make

any natural motions. We just asked them to sit in front of a computer screen to read a text. The participants were

requested to press a key on a keyboard to indicate when they were starting to read and press it again when they

were stopping. Those time stamps were used to segment the recorded signals.

5.1 Reading with everyday life eye trackers

The aim of this large-scale experiment was to demonstrate whether inexpensive eye tracking devices could be

used to determine the number of words read in daily life. The eye trackers were the Tobii Eye X (SVoG) Pupil

(MVoG) and JINS MEME (EoG). Since the SVoG can be used only with a screen, we decided to use that procedure

(i.e. to display documents on a screen) with the other devices to achieve a fair comparison.

To ascertain exactly the number of words read by the subjects, we asked them to read the text from beginning

to end without rereading or skimming any parts of the text. Despite this instruction, some participants could not

refrain from rereading some words for the sake of understanding or skipping some words if they found the text

too easy. Still, we considered that the number of words contained in the text was the number read by the subjects.

A natural reading pattern also involves rereading and skimming; thus, for some specific texts, we asked some

participants to reread or skip one specific paragraph. That process will be explained for the second experiment.

In this experiment, 14 people participated. All the subjects were university students (11 males, three females).

The English ability of the participants varied and they were of different nationalities (Japanese, French, Malaysian,

Norwegian, and Chinese). Most of the subjects were undergraduate or graduate university students; they were

aged 21fi??25 years. Recording while wearing glasses is not possible with the JINS MEME and Pupil; thus, we

selected mainly participants who used contact lenses or did not wear glasses. Only one subject wore glasses, and

he took part in the experiments only with the Tobii Eye X.

In this experiment, we made 194 recordings. Not all the participants were willing to spend a long time with

the experiment, so they read different numbers of texts. In total, the subjects read 78,579 words. With all the

participants, all the texts were read for the first time and read only once.

Table 2 shows the results of the experiment. The performances were analyzed based on three different learning

processes, which are detailed in the following sub-sections. We refer to the “weighted average” as the average

weighted by the number of words contained in the text of a recording. We also computed the weighted standard

deviation and the weighted median, defined as follow. Let μ be the weighted average,wi the weight of an element

xi , and N is the number of elements. The weighted standard deviation Sw is:

Sw =

√∑N
i=1wi (xi − μ)2∑N

i=1wi

The weighted median is found as the element xk satisfying both of these conditions:⎧⎪⎪⎨⎪⎪⎩
∑k−1

i=1 wi < 1/2∑n
i=k+1wi ≤ 1/2

For each pair of evaluation models, we attempted to determine if the difference in performance was statistically

significant using a paired t test. The P values were less than 0.05 for the three pairs of models for the EoG but

not for the other devices. The evaluation models used different learning data, so the results may be significantly

different in some cases. Specifically, the learning data for user-dependent learning is much smaller than for

user-independent cases, which tends to produce worse performance.



123:12 • O. Augereau et al.

Table 2. Weighted average, standard deviation, and median error in percentages for the Wordometer with each device based

on the different learning approaches: user and document independent, user dependent, and user independent. *There were

14 participants and some participants used several devices. **There were 18 documents and the same documents were used

for different experiments. The SVoG and the EoG were recorded together.

Device SVoG MVoG EoG Total

Participants 9 10 5 14* Weighted Av.

Documents 18 18 18 18** error

Recordings 82 53 59 194 among devices

Words 33249 20734 24596 78579

Weighted Av. Error 14.0% 7.6% 11.3% 11.5%

User & doc. independent Weighted Std Error 10.2% 7.3% 8.4%

Weighted Median Error 11.3% 4.6% 9.0%

Weighted Av. Error 11.8% 5.6% 9.5% 9.4%

User dependent & doc. indep. Weighted Std Error 9.1% 5.5% 7.9%

Weighted Median Error 9.6% 4.3% 7.9%

Weighted Av. Error 13.0% 7.2% 10.6% 10.7%

User independent & doc. dep. Weighted Std Error 9.5% 6.8% 8.1%

Weighted Median Error 10.9% 5.1% 8.7%

The participants and documents were partially different, so to compare the performance of the devices we

used the Welch t test. We tested all three pairs of devices for the user- and document-independent models. We

found a significant difference (P values less than 0.05) between the SVoG and EoG. For the other cases, the P

values were greater than 0.05, which means that no conclusions could be drawn.

In the following sub-sections, we detail the results based on the three evaluation models in terms of participant

and documents. After that, we conduct an analysis of the sources of errors.

5.1.1 User- and document-independent learning. We wished to address a problem that has not hitherto been

considered in studies about theWordometer: user and document independence, which is the most difficult context.

No document-independent learning has been tested with state-of-the-art systems. To determine the number of

read words in the recording by one participant, we used all the recordings of all other participants reading a

different document.

In our database, several recordings corresponded to different subjects reading the same documents. If the

reading behavior of two participants was similar, the number of read words by one subject would be easy

to estimate: simply using the recording of another participant reading the same document. But in a real-life

application, if different people used the Wordometer for reading different texts, there would be a low chance for

two people to read the same document.

The weighted average errors with the MVoG, SVoG, and EoG were all under 15%, which led us to conclude

that such systems could be used in everyday life. As a comparison, the error with pedometers used in wearable

devices was found to vary from 1.5% to 22.7% [32]. ]. If we employed a similar daily-life approach for one

subject, the errors of that personfis recordings would tend to compensate one another: some errors would be
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Table 3. Cumulative error of the estimation per participant in user- and document-independent learning. Each subject

undertook as many recordings as they wanted with one, two, or three devices.

Participant
SVoG MVoG EoG

# of words cumulative error # of words cumulative error # of words cumulative error

R1 2201 15.9% 4454 9.7%

R2 238 48.4%

R3 5712 9.1% 690 1.1% 4378 2.1%

R4 5733 5.5%

R5 1440 9.8%

R6 803 0.9%

R7 1346 7.4% 2690 3.4% 4608 9.2%

R8 5097 12.9% 1729 8.2% 5097 9.6%

R9 872 0.5% 6426 9.3%

R10 5213 1.0% 2085 1.7%

R11 4656 6.6% 4087 8.5%

R12 4219 3.8%

R13 2642 12.4%

R14 2163 23.6%

Sum / W. av. 33249 9.0% 20734 6.2% 24596 8.0%

positive (overestimation); others would be negative (underestimation). We will show in the participant-centered

experiment result (section 5.1.4) that the cumulative error was two to three time lower than the average error.

5.1.2 User-dependent and document-independent learning. We computed the performances of the system in a

user-dependent way. In this case, only the other recordings of the same subject were used to estimate the number

of read words for one recording. This method can be applied only if the participant is trained in the system before

using it. The details of the results appear in the second row of Table 2.

It is evident that the performances obtained with this learning approach were the best among all three

approaches. Indeed, if this model can fit reader behavior, this system can estimate more accurately the number of

read words. Thus, the Wordometer can be used either in a user-independent or dependent manner.

5.1.3 User-independent and document-dependent learning. To make a comparison with previous studies, we

made an analysis in a user-independent and document-dependent way. The number of words of one recording

was determined based on all recordings from all other subjects (including ones reading the same document and

other documents). The last row of Table 2 shows the results.

It is evident that in this case the performances are intermediate between user and document-independent

approaches and user-dependent approaches. The Wordometer systems performed better if similar documents had

been read by other participants. Unfortunately, this situation might not often occur in daily life.

5.1.4 Performances per participant. Errors are sometimes positive (overestimation) and sometimes negative

(underestimation); thus, we determined the cumulative error for each participant. This demanded a long-time
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Table 4. Five documents with the largest weighted average error among the devices compared with all documents.

Doc ID Difficulty (L) Nb of words Av. error

ALP 900 643 27.7%

SIT 840 253 16.7%

ITA 950 238 16.6%

FIF 860 293 15.8%

FIG 910 485 15.0%

Average 5 892.0 382.4 18.4%

Average All 848.9 405.4 11.3%

reading behavior analysis. We did not conduct this estimation for each text, but after a subject had finished

reading all texts. Indeed, the aim of the Wordometer is not to quantify specifically how many words have been

read after a short period, such as reading a few words; it is for reading several documents or reading within a day.

We present the results for each subject in Table 3. This table shows the performances of the algorithm for

each user according to the eye tracker used in the experiment. It is evident that the cumulative errors are

notably smaller than the weighted average error reported in Table 2 for all devices. We observed the best average

performances for the MVoG. However, it is clear that depending on the subject, the SVoG can perform better

than the MVoG (as with participant R10) or than the EoG (as with participant R7).

It is also evident that some subjects (especially participants R2 and R14) had a very large error. This occurred

when the calibration failed or detection of the eyes was not possible. We will explain the sources of error in

greater detail in section 5.2.

Since each Wordometer system is independent of other such systems based on technology (SVoG, MVOG, and

EoG), we did not request that the participants necessarily used all the devices. Some subjects had limited time to

participate in the experiment. Therefore, we decided to record more participants with fewer devices than fewer

participants with more devices. In the future, we intend to enlarge our dataset.

5.1.5 Performances per document. We analyzed in greater detail the performances of the systems according to

the type of document. The dataset comprised 18 documents: each was read by at least six participants, at most by

14 participants, and on average by 9.4 participants.

Each text was associated with a difficulty based on the estimated Lexile 10 measure [33]. As explained on the

Lexile Web site: “a Lexile text measure is based on the semantic and syntactic elements of a text”. “For example,

the first Harry Potter book measures 880L”. In our dataset, the document with the lowest difficulty was 610L, and

the text with the highest was 950L. The average difficulty of all the documents was 848.9L. Our participants were

mainly university students from the computer science department and were non-native English speakers; thus,

we chose texts that were not too complex.

Table 4 shows the five documents with the largest error compared with the other documents. The averages

were determined among the three devices. The number of words of each document is also displayed in Table 4. In

our dataset, the shortest document contained 238 words and the longest 643 words. On average, the documents

contained 405.4 words. It is evident in Table 4 that the documents with greater difficulty produced a higher

estimation error than documents that were easier to understand. We found a significant correlation (P value

10https://lexile.com/about-lexile/lexile-overview/
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less than 0.05) between the performances of the SVoG and the difficulty of the documents based on the Pearson

correlation test. Indeed, we obtained the following P values for the three evaluation models:

• User dependent and document independent: P = 0.018,
• User independent and document dependent: P = 0.033,
• User and document independent: P = 0.013.

This result means that if the document was too difficult, the reading behavior of the participants changed and

the estimation became less accurate.

It is also evident that on average, if the documents are shorter, the number of read words is more difficult to

predict. This is because fewer features are available to make the prediction; thus, a slight noise in the signal will

have a greater impact on the prediction.

However, one exception occurred for the document with the largest number of words; that was also the

document with the greatest error. As participants needed to move their heads more while reading, that would

result in greater noise in the eye-tracker signals.

5.1.6 Comparison with professional eye trackers. Professional systems have a higher sampling rate and accuracy,

but they are more expensive [34]. However, we wanted to demonstrate that for simple applications, such as

counting the number of read words, very high sampling rate and accuracy is not necessary. Furthermore, our

algorithm was designed to be robust to noise and some accuracy errors. The preprocessing step (computing the

fixations) and detection of line breaks are designed to be simple and easily appliedfi?!even with an inexpensive

device.

We used two professional eye trackers to test the Wordometer: the SMI Mobile (MVoG) and SMI Red 250

(SVoG). The dataset and results of the experiments appear in Table 5, which shows the performances of all devices

used for all the experiments. It is clear that the performances of the professional devices were not higher than the

everyday-life devices for counting the number of words. That led us to conclude that our Wordometer systems

operated well as everyday-life eye trackers.

Table 5. Percentage of weighted average error and cumulative error per participant with the Wordometer under user- and

document-independent learning.

Device Device Approx. Price Participants Rec. Words Weighted Cumulated

type name (USD) av. error error

MVoG SMI Mobile 11,900 4 14 4556 13.0% 6.7%

MVoG Pupil 1,500 10 53 20734 7.6% 6.2%

SVoG SMI Red250 23,000 4 14 4881 15.8% 10.8%

SVoG Tobii Eye X 110 9 82 33249 14.0% 9.0%

EoG JINS MEME 2,250 5 59 24596 11.3% 8.0%

5.2 Analysis of errors

Before presenting the next experiment, we analyze here the main sources of errors.

5.2.1 Calibration. Calibration is an essential part of the protocol before starting to use an eye tracker. However,

depending on the device, it can be relatively easy or difficult to check whether or not the calibration was successful.
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Fig. 7. Example of a recording where the calibration failed for participant R8 while using the MVoG. This recording resulted

in an estimation error of 27.3%.

In this experiment, the most difficult eye tracker to calibrate was the MVoG. As evident in Fig. 7, if the

calibration is not conducted properly, the recorded position of the eye gaze will be very different from the real

position.

5.2.2 Head movement. With most eye-tracking systems, head movements result in a less accurate estimation

of the number of read words. Head and facial muscle movements produce noise in the EoG signal, which is

difficult to differentiate from eye movement since the amplitude is the same as the signal itself. Indeed, if the

eyes are fixed on a position in a document while the head moves, the EoG will detect that the eyes are moving

(which is true relative to the head, but not relative to the document).

The SVoG is attached to the screen, so if the subject moves their head too much, the eye-tracking position will

be inaccurate. In our previous results, we found that the MVoG performed better than the other systems; one

reason for this finding is that the MVoG is more robust regarding head movements of the user.

5.2.3 Pupil detection. Pupil detection is the main problem for the SVoG and MVoG systems. It can affect

calibration and recording during an experiment. With the MVoG, the eye cameras are placed very near the eyes,

and it is not always easy to adjust them for some participants.

With the SVoG, after the calibration is finished, if the participants change their posture too much, pupil

detection can be lost. Unfortunately, we had no way of detecting when that happened: the SDK provides no

feedback about the accuracy of pupil detection.

During the experiments, we experienced some trouble with pupil detection, especially with some Asian subjects.

Indeed, if the eyelid is less widely open, part of the pupil is concealed by the eyelid and cannot be perfectly

detected.

Fig. 8 shows the impact of misdetection of the pupil. In some extreme cases, such as for participant R2,
misdetection of the pupil produced considerable noise and disrupted the proper functioning of the algorithm.

5.2.4 Electrodes. The JINS MEMEfis EoG consists of three electrodes, which have to be in contact with the

skin (Fig. 5a). If one of them is not properly touching the skin, there will be a high impact on the recording.

Thus, if the user did not wear the glasses properly or moved them too much during the recording, the recordings

tended to be noisier. We did not include five recordings in the dataset because they contained too much noise.

We believe that occurred because the electrodes of the glasses were not properly in contact with the skin. To
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Fig. 8. Example of a recording where the pupil detection confidence was low for participant R2 when using the MVoG. This

recording resulted in an estimation error of 48.4%. It is especially evident at the end of the recording (when the reader was

looking at a corner of the screen) that the pupil was no longer detected. The more fixations are found at an incorrect position,

the greater will be the impact on the performance of the system.

solve that problem, an algorithm needs to be developed that warns the subject to put the glasses correctly in

place. However, the advantage of the JINS MEME is that calibration is unnecessary.

Some recordings were partially noisy and were retained in the dataset; the corresponding parts were removed.

This is explained in section 4.3.

5.2.5 Nationality, sex, reading skill. We also investigated the impact of nationality (Asian / European) and sex

(male / female) on the performance of the Wordometer; however, we found no statistically significant differences.

We also wanted to analyze the impact of the readerfis skill since it directly affects reading behavior. Unfor-

tunately, that necessitated each participant passing a standardized test, which we did not do. We believe the

Wordometer would be more accurate if the learning dataset contained only reading data from participants with

similar reading skills to the subject being tested. But this point remains to be proven.

5.3 Rereading and skipping behavior

In this experiment, we analyzed the robustness of our systems with different types of reading behavior: rereading

and skipping. This experiment is important in quantifying the discrepancy between laboratory conditions and

everyday-life conditions; hitherto, it has not been undertaken in research.

Since the baseline is very difficult to obtain in totally free reading, we asked the participants to follow a

particular scenario: skipping or rereading a specific paragraph and reading all other parts of the text without

rereading and skipping. In this way, we were able to establish the baseline since we could determine the number

of read words.

We used the previous dataset for this experiment, and we added some recordings containing rereading and

skipping. The reading conditions were the same as in the previous subsection: similar kinds of documents were

used, and 10 of the 14 subjects from the previous experiment participated in this one. The details of the new data

and corresponding results appear in Table 6.

In this table it is evident that the current version of the Wordometer is not robust to skipping behavior: the

saccades can be confused with normal reading behaviorfi?!especially if that occurs only for a short time. That
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Table 6. Percentage of error of the Wordometer while rereading and skipping based on user- and document-independent

learning. The most problematic is the skipping pattern, especially with the SVoG and MVoG systems.

Device Participants Rec. Words Weighted av. er. Weighted Std Weighted Med.

Rereading

SVoG 6 24 7876 19.2% 13.6% 17.1%

MVoG 4 12 4108 6.55% 4.88% 4.97%

EoG 4 9 2863 19.7% 6.9% 16.7%

Total 9 45 14847 15.8% 9.90% 13.7%

Skipping

SVoG 5 12 2358 53.8% 37.0% 37.6%

MVoG 4 13 2470 60.7% 94.9% 25.2%

EoG 4 8 1406 21.6% 19.2% 14.8%

Total 8 33 6234 49.2 % 55.9% 27.5%

Total All 10 78 21081 25.7% 23.5% 17.8%

was especially true for the SVoG and MVoG systems. The EoG was more robust to skipping behavior since only

large backward saccades are used in the algorithm.

Furthermore, since the number of read words is smaller, the estimation is more difficult (as explained for short

texts in section 5.1.5). Another algorithm for classifying reading and skipping, such as that developed by Biedert

et al. [35] needs to be used with the Wordometer.

Rereading behavior is less problematic. Indeed, reading two lines once or reading one line twice produces

similar fixation and saccade features and a similar estimation about the number of read words. To be usable in

everyday life, detecting rereading behavior is not necessary; however, more examples of these specific patterns

should be used to make the algorithm more robust.

6 DISCUSSION AND LIMITATIONS

The Wordometer works well with inexpensive eye trackers in everyday-life usage, but there is still a discrepancy

between laboratory conditions and daily life. Among the three devices, the most user-friendly are the EoG

glasses. No calibration is needed, and the glasses look like normal ones used in daily life. The SVoG is also quite

user-friendly. It is attached beneath the screen and is not intrusive. However, a quick calibration is needed. The

MVoG is the most intrusive device: it is not so easy to wear or calibrate.

With all three devices, no feedback is given to the subject during the recording. If the subject moves the glasses

or if detection fails, the subject is unaware, and the result of the prediction will be inaccurate. This problem is not

specific to Wordometer systems: it applies to any eye tracker. These devices are normally used in laboratory

conditions, and so this problem has not yet been addressed.

Our experiments were conducted using computer screens after reading at least 238 words (the size of the

shortest text in our dataset). If the screen is too small or reading time is too short, the current systems will not

work properly. If there are no line breaks or very few lines, the estimation will become inaccurate. However, the

Wordometer is rather like a pedometer: the latter cannot be used for estimations if a person walks just one or

two steps. In the same way, the Wordometer will work well if the subject is reading continuously for at least a

short period of time.

We demonstrated that the difficulty of the document has an impact on reading behavior and on the performance

of the Wordometer. Thus, the difficulty of the document could be used as a parameter to improve performance.
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We also believe that the readerfis skill has an impact; that could also be estimated after reading several texts

with a method such as that of [23] and used as an input feature. The final and main problem is that another

algorithm is necessary to detect the activity of the subject: is that person reading or doing something else? The

Wordometer will work only if the user is reading. In our experiments, the recordings were started and stopped

manually, but that has to be done automatically. Preliminary work about activity detection with an eye tracker

has been conducted [14, 17, 32]; that approach should be extended and integrated with our system. For example,

browsing a Web site and skimming text might be detected as reading, but they would be incorrectly evaluated

by our system and would need to be filtered. Thus far, no such systems have become available; more research

should be undertaken in this direction.

However, we consider that the reported result of an approximate 11% of errors is encouraging and could be

sufficient for everyday usage. By way of reference, the accuracy of pedometers is reportedly 12% [36]. Counting

the number of words read and determining the number of steps walked are quite different activities. But we have

demonstrated a means of quantifying daily mental activity in the same way as it is possible to quantify physical

activity.

7 CONCLUSION AND FUTURE WORK

Quantified self-movement is becoming popular: to better understand themselves and change their behavior,

people track their daily activities, such as doing sports or eating. The Wordometer we present in this paper is a

system that counts the number of words read without analyzing the content of what is read. We believe this

approach will help people understand more about their daily cognitive activity and encourage them to read more.

To determine the number of words read by a subject, we presented in this paper two algorithms for processing

VoG and EoG signals. With the VoG system, if the calibration failed or the participantfis eyes were not correctly

detected, we obtained a large error. The EoG system is more sensitive: the three electrodes always have to be in

contact with the subjectfis skin; furthermore, head movements of the participant induced noise in the signal. The

most robust eye tracker was the MVoG: the eye camera is attached to the subjectfis head and head movements

produce less error. However, it was not always easy to set up the MVoG to detect the pupilfi?!especially with

some participants with slanting or narrow eyes.

We conducted several experiments: a total of 300 recordings by 14 subjects and 109,097 read words. In the

large-scale experiment, we tested three inexpensive devices using three different evaluation methods: user

and document independent; user independent and document dependent; and user dependent and document

independent. We obtained the best results with the user-dependent method since it better fitted the subjectfis

behavior. However, as a cold start, the system should be employed in a user- and document-independent way: that

will be able to predict the number of read words when no other recordings from the same subject are available. If

the same subject continues utilizing the system, the performances can be improved by adopting a user-dependent

approach. We also computed the cumulative error for each participant. Indeed, the Wordometer sometimes

overestimates or underestimates the number of read words; thus, if we cumulate the estimation among the read

documents, the error is reduced. In that case, it is not possible to determine the number of read words for each

document, only for the whole set.

Our second experiment analyzed the robustness of the Wordometer against specific types of reading behavior:

rereading and skipping. Rereading had almost no impact on the Wordometer since the system is based on saccade

and fixation features, which are the same in case of rereading. Skipping is more difficult to deal with since it

is similar to quick reading, but the reader does not actually read any words. The Wordometer is not robust

to skipping: a preprocessing step should be used to prevent confusion while processing the signal with the

Wordometer.

Our future work involves establishing a preprocessing step to filter different reading behaviors, such as

skimming and skipping. We then intend to compare Wordometer performance while reading on paper as against
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on screen with the MVoG and EoG systems. Another future study involves analyzing the impact of layout and

fonts on the Wordometer.
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